Ben Adenbaum joint work with Sergi Elizalde

Dartmouth College

July 5, 2023

antichains

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1} ; equivalently, the set of intervals $\{[i, j] : 1 \le i \le j \le n-1\}$ ordered by inclusion.

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1} ; equivalently, the set of intervals $\{[i, j] : 1 \le i \le j \le n-1\}$ ordered by inclusion.

The set of order ideals of A^{n-1} is in bijection with the set \mathcal{D}_n Dyck paths of semilength n.

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1} ; equivalently, the set of intervals $\{[i, j] : 1 \le i \le j \le n-1\}$ ordered by inclusion.

The set of order ideals of A^{n-1} is in bijection with the set \mathcal{D}_n Dyck paths of semilength n.

We can view rowmotion on ideals of A^{n-1} as an operation $\rho_{\mathcal{D}}: \mathcal{D}_n \to \mathcal{D}_n.$

Rowmotion on Dyck paths

$$\mathcal{S}_n(321) = \{\pi \in \mathcal{S}_n : \pi \text{ is } 321\text{-avoiding}\}$$

$$S_n(321) = \{\pi \in S_n : \pi \text{ is } 321\text{-avoiding}\}$$

Example:

$$S_n(321) = \{\pi \in S_n : \pi \text{ is } 321\text{-avoiding}\}\$$

Example:

We say that $(i, \pi(i))$ is an excedance if $\pi(i) > i$,

$$S_n(321) = \{\pi \in S_n : \pi \text{ is } 321\text{-avoiding}\}\$$

Example:

We say that $(i, \pi(i))$ is an excedance if $\pi(i) > i$, a fixed point if $\pi(i) = i$,

$$S_n(321) = \{\pi \in S_n : \pi \text{ is } 321\text{-avoiding}\}$$

Example:

We say that $(i, \pi(i))$ is an excedance if $\pi(i) > i$, a fixed point if $\pi(i) = i$, and a deficiency if $\pi(i) < i$.

$$S_n(321) = \{\pi \in S_n : \pi \text{ is } 321\text{-avoiding}\}$$

Example:

We say that $(i, \pi(i))$ is an excedance if $\pi(i) > i$, a fixed point if $\pi(i) = i$, and a deficiency if $\pi(i) < i$.

Any $\pi \in S_n(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence.

Any $\pi \in S_n(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence. We can view the set of excedances of π as an antichain in A^{n-1} .

Any $\pi \in S_n(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence. We can view the set of excedances of π as an antichain in A^{n-1} .

Any $\pi \in S_n(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence. We can view the set of excedances of π as an antichain in A^{n-1} . Denote this bijection by

$$\mathsf{Exc}: \mathcal{S}_n(321) \to \mathcal{A}(\mathsf{A}^{n-1}).$$

Any $\pi \in S_n(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence. We can view the set of excedances of π as an antichain in A^{n-1} . Denote this bijection by

$$\mathsf{Exc}: \mathcal{S}_n(321) \to \mathcal{A}(\mathsf{A}^{n-1}).$$

 $\mathsf{Exc}(\pi) = \{[i, \pi(i) - 1] : (i, \pi(i)) \text{ is an excedance of } \pi\}$

$$\rho_{\mathcal{S}} = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc} \,.$$

$$\rho_{\mathcal{S}} = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc} \, .$$

$$\rho_{\mathcal{S}} = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc} \,.$$

$$\rho_{\mathcal{S}} = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc}.$$

$$\rho_{\mathcal{S}} = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc} \,.$$

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $Def(\pi) := Exc(\pi^{-1})$, then ρ_S is equivalent to *inverse* rowmotion of these antichains:

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $Def(\pi) := Exc(\pi^{-1})$, then ρ_S is equivalent to *inverse* rowmotion of these antichains:

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $Def(\pi) := Exc(\pi^{-1})$, then ρ_S is equivalent to *inverse* rowmotion of these antichains:

Given a set S and a bijection $\rho: S \to S$, a statistic on S is *homomesic* under the action of ρ if its average on each orbit is constant.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is *homomesic* under the action of ρ if its average on each orbit is constant. It is called *c-mesic* if its average over each orbit is *c*.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is *homomesic* under the action of ρ if its average on each orbit is constant. It is called *c-mesic* if its average over each orbit is *c*.

For $\pi \in S_n$, let $fp(\pi)$ be its number of fixed points.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is *homomesic* under the action of ρ if its average on each orbit is constant. It is called *c-mesic* if its average over each orbit is *c*.

For $\pi \in S_n$, let $fp(\pi)$ be its number of fixed points.

Theorem

The statistic fp is 1-mesic under the action of ρ_S on $S_n(321)$.
Homomesy of fixed points

Given a set S and a bijection $\rho: S \to S$, a statistic on S is *homomesic* under the action of ρ if its average on each orbit is constant. It is called *c-mesic* if its average over each orbit is *c*.

For $\pi \in S_n$, let $fp(\pi)$ be its number of fixed points.

Theorem

The statistic fp is 1-mesic under the action of ρ_S on $S_n(321)$.

The statistic fp does not correspond to a natural statistic on antichains.

The statistics h_i

Hopkins and Joseph define the following family of statistics on antichains A of A^{n-1} :

$$h_i(A) = \sum_{j=1}^i \mathbb{1}_{[j,i]} + \sum_{j=i}^{n-1} \mathbb{1}_{[i,j]}, \quad \text{where } \mathbb{1}_x = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

The statistics h_i

Hopkins and Joseph define the following family of statistics on antichains A of A^{n-1} :

$$h_i(A) = \sum_{j=1}^i \mathbb{1}_{[j,i]} + \sum_{j=i}^{n-1} \mathbb{1}_{[i,j]}, \quad \text{where } \mathbb{1}_x = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

In terms of the permutation $\pi \in S_n(321)$ such that $A = \text{Exc}(\pi)$, this statistic is the number of crosses in the shaded region:

where the darker square in the corner is counted twice.

The statistics h_i

Hopkins and Joseph define the following family of statistics on antichains A of A^{n-1} :

$$h_i(A) = \sum_{j=1}^i \mathbb{1}_{[j,i]} + \sum_{j=i}^{n-1} \mathbb{1}_{[i,j]}, \quad \text{where } \mathbb{1}_x = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

In terms of the permutation $\pi \in S_n(321)$ such that $A = \text{Exc}(\pi)$, this statistic is the number of crosses in the shaded region:

where the darker square in the corner is counted twice.

Formally,

$$h_i(\pi) = \chi_{\pi^{-1}(i+1) < i+1} + \chi_{\pi(i) > i},$$

where χ is the indicator function.

We can define a similar statistic on permutations that does not come from a natural statistic on antichains.

We can define a similar statistic on permutations that does not come from a natural statistic on antichains.

For $\pi \in S_n$ and $1 \le i \le n$, let $\ell_i(\pi)$ be the number of crosses in the shaded region:

We can define a similar statistic on permutations that does not come from a natural statistic on antichains.

For $\pi \in S_n$ and $1 \le i \le n$, let $\ell_i(\pi)$ be the number of crosses in the shaded region:

Formally,

$$\ell_i(\pi) = \chi_{\pi^{-1}(i) \le i} + \chi_{\pi(i) > i}.$$

Some Homomesies

Theorem (Hopkins-Joseph '20)

The statistics h_i are 1-mesic under the action of ρ_A on $\mathcal{A}(A^{n-1})$.

Theorem (Hopkins-Joseph '20)

The statistics h_i are 1-mesic under the action of ρ_A on $\mathcal{A}(A^{n-1})$.

Corollary

The statistics h_i are 1-mesic under the action of ρ_S on $S_n(321)$.

Theorem (Hopkins–Joseph '20)

The statistics h_i are 1-mesic under the action of ρ_A on $\mathcal{A}(A^{n-1})$.

Corollary

The statistics h_i are 1-mesic under the action of ρ_S on $S_n(321)$.

Theorem

The statistics ℓ_i are 1-mesic under the action of ρ_S on $S_n(321)$.

Using that h_i and ℓ_i are 1-mesic, we get another proof that fp is 1-mesic as well, since

$$fp(\pi) = \sum_{i=1}^{n} \ell_i(\pi) - \sum_{i=1}^{n-1} h_i(\pi).$$

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem For all $\pi \in S_n(321)$, $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem
For all
$$\pi \in S_n(321)$$
,
 $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Corollary

For even n, the statistic sgn is 0-mesic under ρ_S on $S_n(321)$.

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem
For all
$$\pi \in S_n(321)$$
,
 $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Corollary

For even n, the statistic sgn is 0-mesic under ρ_S on $S_n(321)$.

Simion–Schmidt '85 showed that $S_n(321)$ contains the same number of odd and even permutations, for even n.

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem
For all
$$\pi \in S_n(321)$$
,
 $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Corollary

For even n, the statistic sgn is 0-mesic under ρ_S on $S_n(321)$.

Simion–Schmidt '85 showed that $S_n(321)$ contains the same number of odd and even permutations, for even *n*. Reifegerse '05 gave a bijective proof.

Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem
For all
$$\pi \in S_n(321)$$
,
 $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Corollary

For even n, the statistic sgn is 0-mesic under ρ_S on $S_n(321)$.

Simion–Schmidt '85 showed that $S_n(321)$ contains the same number of odd and even permutations, for even *n*. Reifegerse '05 gave a bijective proof. The map $\pi \mapsto \rho_S(\pi)$ gives a new bijective proof. Let $sgn(\pi) = (-1)^{inv(\pi)}$ be the sign of a permutation π .

Theorem
For all
$$\pi \in S_n(321)$$
,
 $\operatorname{sgn}(\rho_S(\pi)) = \begin{cases} \operatorname{sgn}(\pi) & \text{if } n \text{ is odd,} \\ -\operatorname{sgn}(\pi) & \text{if } n \text{ is even.} \end{cases}$

Corollary

For even n, the statistic sgn is 0-mesic under ρ_S on $S_n(321)$.

Simion-Schmidt '85 showed that $S_n(321)$ contains the same number of odd and even permutations, for even *n*. Reifegerse '05 gave a bijective proof. The map $\pi \mapsto \rho_S(\pi)$ gives a new bijective proof. In fact, the map $\pi \mapsto \rho_S(\pi^{-1})$ gives a sign-reversing involution.

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Theorem (Hopkins–Joseph '20)

The number of antichains in A^{n-1} fixed by LK $\circ \rho_A$ equals $\binom{n}{\lfloor n/2 \rfloor}$.

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Theorem (Hopkins–Joseph '20)

The number of antichains in A^{n-1} fixed by LK $\circ \rho_A$ equals $\binom{n}{\lfloor n/2 \rfloor}$.

Simpler proof: Via the map Exc, the involution $LK \circ \rho_A$ on $\mathcal{A}(A^{n-1})$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_n(321)$.

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Theorem (Hopkins–Joseph '20)

The number of antichains in A^{n-1} fixed by LK $\circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n/2 \rfloor}$.

Simpler proof: Via the map Exc, the involution LK $\circ \rho_A$ on $\mathcal{A}(A^{n-1})$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_n(321)$. Thus, $|\{A \in \mathcal{A}(A^{n-1}) : LK \circ \rho_A(A) = A\}|$ $= |\{\pi \in \mathcal{S}_n(321) : \pi = \pi^{-1}\}|$

Panyushev '09 defined an involution LK on $\mathcal{A}(A^{n-1})$, which is essentially equivalent to the Lalanne–Kreweras involution on \mathcal{D}_n .

Theorem (Hopkins–Joseph '20)

The number of antichains in A^{n-1} fixed by LK $\circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n/2 \rfloor}$.

Simpler proof: Via the map Exc, the involution LK $\circ \rho_A$ on $\mathcal{A}(A^{n-1})$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_n(321)$. Thus, $|\{A \in \mathcal{A}(A^{n-1}) : LK \circ \rho_A(A) = A\}|$ $= |\{\pi \in \mathcal{S}_n(321) : \pi = \pi^{-1}\}| = \binom{n}{\lfloor n/2 \rfloor},$

using a classical result of Simion-Schmidt '85.

Promotion

Recall Schützenberger's promotion on standard Young tableaux:

Promotion

Recall Schützenberger's promotion on standard Young tableaux:

Define a rotation operation on Dyck paths:

Via the standard bijections, promotion translates to rotation on Dyck paths and on non-crossing matchings:

Via the standard bijections, promotion translates to rotation on Dyck paths and on non-crossing matchings:

The Armstrong–Stump–Thomas bijection

Theorem (Armstrong–Stump–Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}(A^{n-1})$ under rowmotion, and \mathcal{N}_n (equivalently, \mathcal{D}_n) under rotation.

The Armstrong–Stump–Thomas bijection

Theorem (Armstrong–Stump–Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}(A^{n-1})$ under rowmotion, and \mathcal{N}_n (equivalently, \mathcal{D}_n) under rotation.

The Armstrong–Stump–Thomas bijection

Theorem (Armstrong–Stump–Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}(A^{n-1})$ under rowmotion, and \mathcal{N}_n (equivalently, \mathcal{D}_n) under rotation.

The bijection AST has a complicated description, and it generalizes to other Weyl groups, with the correct formulation.

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

1 2 5

3

35124

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

We can use 321-avoiding permutations to give a simple description of the AST bijection (in type A):

Theorem

 $\mathsf{AST} = \psi \circ \mathsf{RSK} \circ \mathsf{Exc}^{-1}$

THANK YOU!