## GUILLOTINE RECTANGULATIONS AND MESH PATTERNS

> Andrei Asinowski* (Alpen-Adria Universität Klagenfurt) Jean Cardinal (Université libre de Bruxelles) Stefan Felsner (Technische Universität Berlin) Éric Fusy (Université Gustave Eiffel)

Permutation Patterns 2023<br>Dijon, July 2023

[^0]A rectangulation (also: a floorplan) is a partition of a rectangle into rectangles.
Convention: No point is common to four rectangles.
The size of a rectangulation is the number of rectangles.


A rectangulation (also: a floorplan) is a partition of a rectangle into rectangles.
Convention: No point is common to four rectangles.
The size of a rectangulation is the number of rectangles.


Two kinds of equivalence:

- weak (preserves rectangle-segment contacts),
- strong (preserves rectangle-rectangle contacts).


These two rectangulations are weakly equivalent but not strongly equivalent.

$A, B$, and $C$ are weakly equivalent.
$A$ and $B$ are strongly equivalent,
$C$ is not strongly equivalent to them.


A


B


C
$\mathrm{A}, \mathrm{B}$, and C are weakly equivalent.
$A$ and $B$ are strongly equivalent,
$C$ is not strongly equivalent to them.
Equivalence classes up to the weak equivalence are called mosaic rectangulations (I will say: weak rectangulations).

Equivalence classes up to the strong equivalence are called generic rectangulations (I will say: strong rectangulations).

Every rectangulation of size $n$ is weakly equivalent to precisely one diagonal rectangulation which uses the grid $[n] \times[n]$, and the NW-SE diagonal intersects every rectangle. It defines the NW-SE labeling of rectangles.


Every rectangulation of size $n$ is weakly equivalent to precisely one diagonal rectangulation which uses the grid $[n] \times[n]$, and the NW-SE diagonal intersects every rectangle. It defines the NW-SE labeling of rectangles.


The anti-diagonal rectangulation $\longrightarrow$ the SW-NW labeling.

Permutation classes to appear in this talk:
Baxter permutations: $\operatorname{Av}(2[41] 3,3[14] 2)$.
Twisted Baxter permutations: $\operatorname{Av}(2[41] 3,3[41] 2)$.
Co-twisted Baxter permutations: $\operatorname{Av}(2[14] 3,3[14] 2)$.
These three classes are enumerated by Baxter numbers.

Separable permutations: $\operatorname{Av}(2413,3142)$.

Two-clumped permutations.
Co-two-clumped permutations.




Baxter


Two-clumped:





Co-two-clumped:


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct $R=\gamma_{w}(\pi)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$

$$
\pi=341625 \quad \text { Now we construct } R=\gamma_{w}(\pi)
$$



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


- 3

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


- 1

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


| - |
| :--- |
| 6 |
| 2 |
| $-\quad 4$ |
| - |
| - |

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the left rule


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule


- 3

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule
$\begin{array}{r}\text { - } \\ \hline\end{array}$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule

| - 5 |
| :--- |
| - 6 |
| - |
| 0 |
|  |
| - |
| - |



The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the right rule
$\begin{array}{r}\text { - } \\ \hline\end{array}$


The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the left rule

the SW-NE rule

$\begin{array}{r}- \\ \hline \\ - \\ \\ - \\ 1 \\ - \\ 6 \\ - \\ \hline\end{array}$

The mapping $\gamma_{w}: S_{n} \rightarrow$ weak rectangulations of size $n$ $\pi=341625 \quad$ Now we construct the preimage $\gamma_{w}^{-1}(R)$

the left rule


Summary. (Reading ${ }^{+}$, Meehan, Ackerman ${ }^{+}$, Cardinal ${ }^{+}, \ldots$ )

- The mapping $\gamma_{w}$ is surjective.
- The preimage of a rectangulation $R$ is the set of linear extensions of a poset $P_{w}(R)$.
- $P_{w}(R)$ is the transitive closure
 of the contact relations in the diagonal representative of $R$.
- The set $L\left(P_{w}(R)\right)$ contains precisely one Baxter / twisted Baxter / co-twisted Baxter permutation.
- The twisted Baxter / the co-twisted Baxter permutation is the minimal / the maximal element of $L\left(P_{w}(R)\right)$, with respect to the weak Bruhat order.


The mapping $\gamma_{s}: S_{n} \rightarrow$ strong rectangulations of size $n$

- Reading (2011):
- A "2-step" description of $\gamma_{s}$ :

First, apply $\gamma_{w}$, then shuffle the walls.

- Restriction of $\gamma_{s}$ to a bijection $\beta$ between two-clumped permutations and strong rectangulations.
- Our contribution:
- A "1-step" description of $\gamma_{s}$.
- An explicit desription of the preimage of a rectangulation under $\gamma_{s}$ (a poset) and $\beta$ (a 2 -clumped permutation).

Reading's mapping

$$
\pi=278153964
$$

| 1 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 |  |  |  |  |  |  |  |
|  |  | 3 |  |  |  |  |  |  |
|  |  |  | 4 |  |  |  |  |  |
|  |  |  |  | 5 |  |  |  |  |
|  |  |  |  |  | 6 |  |  |  |
|  |  |  |  |  |  | 7 |  |  |
|  |  |  |  |  |  |  | 8 |  |
|  |  |  |  |  |  |  |  | 9 |

Reading's mapping

$$
\pi=278153964
$$



Step 1:
diagonal rectangulation Result: $\gamma_{w}(\pi)$.

Reading's mapping

$$
\pi=278153964
$$

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |
|  |  | 4 |  |  |  |  |  |
|  | - |  | 5 |  |  |  |  |
|  |  |  |  | 6 |  |  |  |
|  | , |  |  |  | 7 |  |  |
|  |  |  |  |  |  | 8 |  |
|  |  |  |  |  |  |  | 9 |

Step 1:
diagonal rectangulation Result: $\gamma_{w}(\pi)$.


Step 2: wall shuffles. Result: $\gamma_{s}(\pi)$.

## Our mapping

$\pi=278153964$
Pr

## Our mapping

$\pi=278153964$


Our mapping
$\pi=278153964$


Our mapping
$\pi=278153964$


Our mapping
$\pi=278153964$


## Preimage

To find the preimage, we act similarly to the weak case. We use the blocking relations and two "special relations":


Preimage


Preimage

the left rule

- 2

Preimage

the left rule


Preimage

the left rule

- $\begin{aligned} & 1 \\ & 7 \\ & - \\ & 2\end{aligned}$

Preimage

the left rule


the right rule

Preimage

the left rule


the right rule

- 2

Preimage

the left rule


the right rule

7
$\bullet \quad 2$

Preimage

the left rule


the right rule
$\begin{array}{r}\bullet \\ \bullet \quad 7 \\ \mathbf{~} \\ \hline\end{array}$

Preimage

the left rule



Preimage

the left rule



Preimage

the left rule


the right rule


Preimage

the left rule


the right rule


Preimage

the left rule



Preimage

the left rule


the right rule


Preimage

the left rule


the right rule


Preimage

the left rule


the right rule


Summary. (Reading, Takahashi ${ }^{+}, \ldots$ )

- The mapping $\gamma_{s}$ is surjective.
- The preimage of a rectangulation $R$ is the set of linear extensions of a poset $P_{s}(R)$.
- $P_{s}(R)$ is the transitive closure of the contact + special relations in $R$.
- The set $L\left(P_{s}(R)\right)$ contains precisely one two-clumped / co-two-clumped permutation.
- The two-clumped / the co-two-clumped permutation is the minimal / the maximal element of $L\left(P_{s}(R)\right.$ ).

A guillotine rectangulation is either the rectangulation of size 1 , or a rectangulation obtained recursively by gluing two guillotine rectangulations along a horizontal or a vertical segment.

guillotine

non-guillotine

A guillotine rectangulation is either the rectangulation of size 1 , or a rectangulation obtained recursively by gluing two guillotine rectangulations along a horizontal or a vertical segment.

guillotine

non-guillotine

Observation. A rectangulation is guillotine if and only if it does not contain "windmills" - configurations of segments as shown here.

windmills

Thm (Ackerman ${ }^{+}$). The bijection between weak rectangulations and Baxter permutations restricts to a bijection between weak guillotine rectangulations and separable permutations.

$$
\begin{aligned}
& \text { Baxter }=\operatorname{Av}(2[41] 3,3[14] 2) \\
& \text { Separable }=\operatorname{Av}(2413,3142)
\end{aligned}
$$

Weak guillotine rectangulations are enumerated by Schröder numbers.

Thm (Ackerman ${ }^{+}$). The bijection between weak rectangulations and Baxter permutations restricts to a bijection between weak guillotine rectangulations and separable permutations.

$$
\begin{aligned}
& \text { Baxter }=\operatorname{Av}(2[41] 3,3[14] 2) \\
& \text { Separable }=\operatorname{Av}(2413,3142)
\end{aligned}
$$

Weak guillotine rectangulations are enumerated by Schröder numbers.

| Weak: | Weak guillotine: |
| :--- | :--- |
| Baxter permutations | Separable permutations |
| Enumeration: 1970s | Enumeration is elementary |
| GF D-finite | GF algebraic |
| Strong: | Strong guillotine: |
| Two-clumped permutations | ??????????????? |
| First results: 2011 |  |
| GF not D-finite (Fusy + 2021) |  |

Conjecture (Merino and Mütze, 2021). Weak guillotine rectangulations are in bijection with two-clumpled permutations that avoid the following mesh patterns:


Conjecture (Merino and Mütze, 2021). Weak guillotine rectangulations are in bijection with two-clumpled permutations that avoid the following mesh patterns:


Theorem (ACFF, 2023). A permutation $\pi$ avoids the mesh pattern $p_{1}$ resp. $p_{2}$ if and only if the rectangulations $\gamma_{w}(\pi)$ and $\gamma_{s}(\pi)$ avoid the windmill $w_{1}$ resp. $w_{2}$.

$w_{1}$

$w_{2}$

## Proof, step 1:

The mesh patterns

are (respectively) equivalent to the mesh paterns


## Proof, step 2:

$\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.


## Proof, step 2:

$\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.


## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 2:

 $\pi$ contains $q_{1} \Longrightarrow$ $\gamma_{w}(\pi)$ contains $w_{1}$.

No $x$ with $b<x<e$ is inserted earlier than $e$

The staircase just after inserting $e$

No $x$ with $a<x<d$ is inserted later than $a$.

The staircase just before inserting $a$

## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


Labeling: $a<b<c<d<e$ Insertion: $b \prec e \prec c \prec a \prec d$

## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


Labeling: $a<b<c<d<e$ Insertion: $b \prec e \prec c \prec a \prec d$


## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


Labeling: $a<b<c<d<e$ Insertion: $b \prec e \prec c \prec a \prec d$


## Proof, step 3:

$\gamma_{s}(\pi)$ contains $w_{1}$
$\Longrightarrow \pi$ contains $q_{1}$.


Labeling: $a<b<c<d<e$ Insertion: $b \prec e \prec c \prec a \prec d$


Theorem (ACFF, 2023). A permutation $\pi$ avoids $p_{1}$ and $p_{2}$ if and only if the rectangulations $\gamma_{w}(\pi)$ and $\gamma_{s}(\pi)$ are guillotine.

Theorem (ACFF, 2023). A permutation $\pi$ avoids $p_{1}$ and $p_{2}$ if and only if the rectangulations $\gamma_{w}(\pi)$ and $\gamma_{s}(\pi)$ are guillotine.
Corollary. There are bijections between

1. weak guillotine rectangulations and
(a) $\left(p_{1}, p_{2}\right)$-avoiding Baxter permutations,
(b) $\left(p_{1}, p_{2}\right)$-avoiding twisted Baxter permutations,
(c) $\left(p_{1}, p_{2}\right)$-avoiding co-twisted Baxter permutations.
2. strong guillotine rectangulations and
(a) $\left(p_{1}, p_{2}\right)$-avoiding two-clumped permutations.
(b) $\left(p_{1}, p_{2}\right)$-avoiding co-two-clumped permutations.

Theorem (ACFF, 2023). A permutation $\pi$ avoids $p_{1}$ and $p_{2}$ if and only if the rectangulations $\gamma_{w}(\pi)$ and $\gamma_{s}(\pi)$ are guillotine.
Corollary. There are bijections between

1. weak guillotine rectangulations and
(a) $\left(p_{1}, p_{2}\right)$-avoiding Baxter permutations,
(b) ( $p_{1}, p_{2}$ )-avoiding twisted Baxter permutations,
(c) ( $p_{1}, p_{2}$ )-avoiding co-twisted Baxter permutations.
2. strong guillotine rectangulations and
(a) ( $p_{1}, p_{2}$ )-avoiding two-clumped permutations.
(b) ( $p_{1}, p_{2}$ )-avoiding co-two-clumped permutations.

## Implications.

- 1(a) implies $\operatorname{Av}(2413,3142)=\operatorname{Av}\left(2[41] 3,3[14] 2, p_{1}, p_{2}\right)$.
- 2(a) is the first representation of strong guillotine rectangulations by a permutation class (conjectured by Merino and Mütze).

END



[^0]:    * Supported by FWF - The Austrian Science Fund

