Block-WISE Simple Permutations

Eli Bagno, Estrella Eisenberg, Shulamit Reches and Moriah Sigron (Jerusalem College of Technology)

 block-wise simple permutations. We also present a bijection between these interval posets and certain tiling's of the n-gon

BLOCK-WISE SIMPLE PERMUTATION - DEFINITION

Let \mathcal{S}_{n} be the group of permutations of the set $\{1, \ldots, n\}$.

1. The identity permutation $\pi=1$ is block-wise simple.
2. A permutation $\pi \in \mathcal{S}_{n}$ is block-wise simple if there is $\sigma \in \operatorname{Simp}_{k}(k \geq 4)$ where Simp_{k} is the set of simple permutations of order k, and there are $\alpha_{1}, \ldots, \alpha_{k}$ which are block-wise simple permutations, such that $\pi=\sigma\left[\alpha_{1}, \ldots, \alpha_{k}\right]$, the inflation of σ by $\alpha_{1}, \ldots, \alpha_{k}$.

Denote by W_{n} the set of block-wise simple permutations.

BLOCK-WISE SIMPLE - EXAMPLE

$2413[3142,1,1,1]=4253716 \in W_{7}$.
There are no block-wise simple permutations of orders 2 and 3 .
For $n \in\{4,5,6\}$, a permutation is block-wise simple, if and only if it is simple.

AN ALTERNATE DEFINITION OF BLOCK-WISE SIMPLE PERMUTATIONS

 A permutation $\pi \in \mathcal{S}_{n}$ is block-wise simple if and only if it has no interval of the form $p_{1} \oplus p_{2}$ or $p_{1} \ominus p_{2}$.
COUNTING BLOCK-WISE SIMPLE PERMUTATIONS FOR $n=8$

$$
\text { 1. } \pi=\sigma[1,1,1,1,1,1,1,1] \text { with } \sigma \in \operatorname{Simp}_{8} \text {. }
$$

2. $\pi \in\{\sigma[\tau, 1,1,1], \sigma[1, \tau, 1,1], \sigma[1,1, \tau, 1], \sigma[1,1,1, \tau]\}, \sigma \in \operatorname{Simp}_{4}, \tau \in \operatorname{Simp}_{5}$.
3. $\pi \in\{\sigma[\tau, 1,1,1,1], \sigma[1, \tau, 1,1,1], \sigma[1,1, \tau, 1,1], \sigma[1,1,1, \tau, 1], \sigma[1,1,1,1, \tau]\}, \sigma \in \operatorname{Simp}_{5}, \tau \in \operatorname{Simp}_{4}$.

$\left|\operatorname{Simp}_{5}\right| \cdot\left|\operatorname{Simp}_{4}\right| \cdot 5=60$

$\left|S i m p_{4}\right| \cdot\left|S i m p_{5}\right| \cdot 4=48$

A FORMULA TO COUNT SIMPLE BLOCK PERMUTATIONS

Let $w_{n}=\left|W_{n}\right|$ and $s_{n}=\left|\operatorname{Simp}_{n}\right|$. Then, for $n \geq 4$ we have

$$
\begin{equation*}
w_{n}=\sum_{l=4}^{n} s_{l} \sum_{\lambda\left(\lambda_{1}, \ldots, \lambda_{l}\right) \in \operatorname{Comp}(n, l)} w_{\lambda_{1}} \cdots w_{\lambda_{l}} \tag{1}
\end{equation*}
$$

B. E. TENNER'S INTERVAL POSET - DEFINITION

The interval poset of a permutation $\pi \in \mathcal{S}_{n}$ is the poset $P(\pi)$ whose elements are the non-empty intervals of π; the order is defined by set inclusion. The minimal elements are the intervals of size 1 .

INTERVAL POSET - EXAMPLE

Interval poset of the permutations:
$5123647,5321647,4612357,4632157,7463215,7461235,7532164,7512364$

THEOREM (BAGNO-EISENBERG-RECHES-SigRON, 2022)

The number of interval posets that represent a block-wise simple permutation of order n is equal to

$$
\frac{1}{n} \sum_{i=1}^{\left\lfloor\frac{n-1}{3}\right\rfloor}\binom{n+i-1}{i}\binom{n-2 i-2}{i-1}
$$

which is also the number of ways to place non-crossing diagonals in a convex $(n+1)$-gon such that no triangles or quadrilaterals are present.

Bijective proof

Associate with the interval poset corresponding to $\pi \in W_{n}$, the convex ($n+1$)-gon whose set of diagonals is
$\{(a, b+1) \mid[a, b]$ is an internal node of the interval poset $\}$.

ASYMPTOTICS - AN OPEN QUESTION

Use Equation (1) to obtain an upper bound for the proportion of the number of block-wise simple permutations to the magnitude of the entire set of permutations. Write $A_{n}=W_{n}-\operatorname{Simp} p_{n}$ and $R_{n}=\frac{\left|A_{n}\right|}{\left|S_{n}\right|}$. Experimental checks show that $\lim _{n \rightarrow \infty} R_{n}=0$. Actually, we have corroborating data up to $n=23$.

Conjecture: The proportion R_{n} tends to 0 when n tends to infinity.

