A q, r-ANALOGUE FOR THE STIRLING NUMBERS OF THE FIRST KIND OF COXETER GROUPS OF TYPE B

Eli Bagno (Jerusalem College of Technology) and David Garber (Holon Institute of Technology)

 with a combinatorial interpretation and some identities.
(E-mails: bagnoe@jct.ac.il, garber@hit.ac.il)

STIRLING NUMBERS OF THE FIRST KIND

The most common combinatorial interpretation of Stirling number of the first kind, denoted by $s(n, k)$, is as the number of permutations in S_{n} that are decomposed into k cycles
Theorem 1 (classical) The Stirling numbers of the first kind satisfy the following recursion: $s(n, k)=s(n-1, k-1)+(n-1) s(n-1, k)$, with the boundary conditions: $s(n, n)=1$ and $s(n, 0)=0$.

BRODER'S r-VARIANT OF STIRLING NUMBERS

Broder defined a generalization of the Stirling number of the first kind by adding the requirement that no two of the first r elements of $\{1, \ldots, n\}$ share a cycle. Broder's r-variant, denoted by $s_{r}(n, k)$, satisfies the same recursion, with the following different boundary conditions: $s_{r}(n, k)=0$ for $n<r$ and $s_{r}(n, k)=\delta_{k r}$ for $n=r$.

THE GROUP OF SIGNED PERMUTATIONS

Definition 2 Denote $[\pm n]:=\{ \pm 1, \ldots, \pm n\}$. A signed permutation is a bijective function: $\pi:[\pm n] \rightarrow[\pm n]$, satisfying: $\pi(-i)=-\pi(i)$, $\forall i$. The group of signed permutations of the set $[\pm n]$ (with respect to composition of functions), denoted by B_{n}, is also known as the hyperoctahedral group or the Coxeter group of type B.
Every signed permutation can be decomposed into a multiplication of disjoint cycles, which may be either split or non-split: A cycle C is called non-split if " $i \in C$ if and only if $-i \in C$ ", and split otherwise A signed permutation, written as a sequence of disjoint cycles, is presented in standard form if its cycles are ordered in such a way that the sequence composed by the smallest absolute values of the elements of each cycle increases.
Example 3 Let $\pi=(\mathbf{1},-3)(3,-1)(\mathbf{2})(-2)(4,5,-4,-5)$
Split cycles: $(1,-3)(3,-1)$ and $(2)(-2)$; Non-split cycle: $(4,5,-4,-5)$.

STIRLING NUMBER OF TYPE B

The Stirling number of type B of the first kind $s^{B}(n, k)$ counts the signed permutations on n elements having k non-split cycles
$s^{B}(n, k)$ satisfies the following recursion:
$s^{B}(n, k)=s^{B}(n-1, k-1)+(2 n-1) s^{B}(n-1, k)$
with the boundary conditions: $s^{B}(n, n)=s^{B}(n, 0)=1$.

Restricted Growth words

Definition 4 Let $\Sigma_{B}=\{(i, j) \in \mathbb{Z} \times \mathbb{Z}|1 \leq|i|,|j| \leq n\}$.
A restricted growth (RG-)word of type B of the first kind is a word $\omega_{n}=\left(i_{1}, j_{1}\right) \cdots\left(i_{n}, j_{n}\right)$ in the alphabet Σ_{B}, which satisfies the following conditions:
(1) We have either $\left(i_{1}, j_{1}\right)=(1,1)$ or $\left(i_{1}, j_{1}\right)=(-1,1)$
(2) For each $2 \leq t \leq n$, the following inequality holds:
$\left|i_{t}\right| \leq \max \left\{\left|i_{1}\right|, \ldots,\left|i_{t-1}\right|\right\}+1$.
(3a) If $\left|i_{t}\right|=\max \left\{\left|i_{1}\right|, \ldots,\left|i_{t-1}\right|\right\}+1$, we have: $j_{t}=1$
(3b) If $\left|i_{t}\right| \leq \max \left\{\left|i_{1}\right|, \ldots,\left|i_{t-1}\right|\right\}$, one of the following pairs exists in ω : either $\left(i_{t}, j_{t}-1\right)$ or $\left(i_{t},-\left(j_{t}-1\right)\right)$.
We denote by $R_{B}(n, k)$ the set of all $R G$-words of type B of the first kind satisfying: $\#\left\{i_{t} \mid 1 \leq t \leq n, i_{t}<0\right\}=k$, and by $R_{B}^{r}(n, k)$ its subset containing the words that begin with the prefix $\omega_{1} \cdots \omega_{r}=1 \cdots r$.

FROM SIGNED PERMUTATIONS TO RG-WORDS

Let $\pi=C_{1} \cdots C_{k}$ where for each $1 \leq t \leq k, C_{t}$ is a signed cycle in standard form. Define $\Phi_{B}(\pi)=\omega_{1} \cdots \omega_{n}$ according to the rule
$\omega_{i}=(t, s)$, where:

- i (or $-i$) appears in the cycle C_{t}
- $t>0$ if and only if C_{t} is split.
- $|s|$ is the location of i in the cycle C_{t}.
- The sign of s is the sign of the first appearance of i or $-i$ in the cycle C_{t}.

Example 5 The signed permutation $\underbrace{(1,-7)} \underbrace{(-1,7)}_{-C_{1}}(2,-5,4,-9) \underbrace{(-2,5,-4,9)} \underbrace{(3,8,-3,-8)}(6,-6)$,
corresponds to the following $R G$-word of type B of the first kind: $\boldsymbol{\omega}=\underbrace{(1,1)}_{\omega_{1}}(2,1) \underbrace{(-3,1)}(2,3) \underbrace{(-4,1)}_{\omega^{(2,-2)}} \underbrace{(1,-2)}(\underbrace{(-3,2)}(2,-4)$.

FLAG-INVERSION STATISTIC ON RG-WORDS
Definition 6 Define $\preceq_{\text {abslex }}$ on Σ_{B} as follows:
$(i, j) \preceq_{\text {abslex }}\left(i^{\prime}, j^{\prime}\right) \Longleftrightarrow\left(|i|<\left|i^{\prime}\right|\right)$ or $\quad\left(|i|=\left|i^{\prime}\right|\right.$ and $\left.|j| \leq\left|j^{\prime}\right|\right)$
Definition 7 Let $\omega=\omega_{1} \cdots \omega_{n} \in R_{B}(n, k)$. Define:
$\operatorname{inv}_{B}(\omega)=\#\left\{\left(\omega_{i}, \omega_{j}\right) \mid i<j, \omega_{j} \prec_{\text {abslex }} \omega_{i}\right\}$,
$\operatorname{neg}(\omega)=\#\left\{\omega_{t}=\left(i_{t}, j_{t}\right) \mid j_{t}<0\right\}$ and finv $(\omega)=2 \operatorname{inv}_{B}(\omega)+\operatorname{neg}(\omega)$.

EXAMPLE FOR THE FLAG-INVERSION STATISTIC Given the RG-word of type B of the first kind:
 $\omega=\underbrace{(1,1)} \underbrace{\underbrace{(-3,1)}}_{\sim^{(-2,1)}} \underbrace{(-2,3)} \underbrace{(-2,-2)} \underbrace{(-4,1)} \underbrace{(1,-2)} \underbrace{(-3,2)} \underbrace{(-2,-4)}$,
 we have:
 $\operatorname{inv}_{B}(\omega)=\#\left\{\begin{array}{c}\left(\omega_{2}, \omega_{7}\right),\left(\omega_{3}, \omega_{4}\right),\left(\omega_{3}, \omega_{5}\right),\left(\omega_{3}, \omega_{7}\right),\left(\omega_{3}, \omega_{9}\right),\left(\omega_{4}, \omega_{5}\right), \\ \left(\omega_{4}, \omega_{7}\right),\left(\omega_{5}, \omega_{7}\right),\left(\omega_{6}, \omega_{7}\right),\left(\omega_{6}, \omega_{8}\right),\left(\omega_{6}, \omega_{9}\right),\left(\omega_{8}, \omega_{9}\right)\end{array}\right\}=12$,

and $\operatorname{neg}(\omega)=\#\left\{\omega_{5}, \omega_{7}, \omega_{9}\right\}=3$.
Therefore:

$$
\operatorname{finv}(\omega)=2 \operatorname{inv}_{B}(\omega)+\operatorname{neg}(\omega)=27
$$

A q-analogue of type B

Definition 8 Define a q-analogue of type B, s_{q}^{B}, using the recursion: $s_{q}^{B}(n, k)=s_{q}^{B}(n-1, k-1)+\left(1+[2 n-2]_{q}\right) \cdot s_{q}^{B}(n-1, k)$, where $[k]_{q}=1+q+q^{2}+\cdots+q^{k-1}$, and the boundary conditions:

$$
s_{q}^{B}(n, 0)=\sum_{k=0}^{n} s_{q^{2}}^{A}(n, k) \cdot(1+q)^{n-k} \text { for } n \geq 1
$$

and $s_{q}^{B}(0, k)=\delta_{0 k}$

A q, r-ANALOGUE OF TYPE B

Definition 9 Define a q, r-analogue of type $B, s_{q, r}^{B}$, using the recursion: $s_{q, r}^{B}(n, k)=s_{q, r}^{B}(n-1, k-1)+\left(1+[2 n-2]_{q}\right) \cdot s_{q, r}^{B}(n-1, k)$, and the boundary conditions:

$$
\begin{gathered}
s_{q, r}^{B}(n, r)=\sum_{\ell=0}^{n-2 r} s_{q^{2}}^{A}(n-r, \ell+r) \cdot(1+q)^{n-r-\ell}, \\
s_{q, r}^{B}(n, k)=0 \text { for } 0 \leq k<r, \text { and } s_{q, r}^{B}(0, k)=\delta_{0 k} .
\end{gathered}
$$

COMBINATORIAL REALIZATION

Theorem 10 (Bagno-Garber, 2023) The generating functions of the statistic finv $=2 \operatorname{inv}_{B}+$ neg over $R_{B}(n, k)$ and $R_{B}^{r}(n, k)$ satisfy:

$$
\sum_{\omega \in R_{B}(n, k)} q^{\operatorname{finv}(\omega)}=s_{q}^{B}(n, k) ; \quad \sum_{\omega \in R_{B}^{r}(n, k)} q^{\operatorname{finv}(\omega)}=s_{q, r}^{B}(n, k)
$$

Hence, they are combinatorial realizations of the q-Stirling and the q, r-Stirling numbers of the first kind of type B, respectively.

