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Mesh patterns

A mesh pattern: permutation with shaded cells
The permutation must occur, with the shaded regions empty.

An occurrence in a permutation
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Likelihood

Likelihood of pattern p:
Asymptotic probability that a permutation contains a copy of p.

κ(p) = lim
n→∞

P
[
σn contains p

]
,

where σn is a random n-permutation.

∣∣Avn(p)
∣∣ ∼ (

1− κ(p)
)
n!

Observation (monotonicity)
The addition of shading never increases the likelihood.

If q is formed from p by shading some unshaded cells of p, then

κ(q) 6 κ(p).
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Vincular patterns

Vincular pattern: each column fully shaded or fully unshaded
Specifies adjacency requirements
• between points for medial columns, and
• to the start or end for peripheral columns.

Consecutive pattern:
all medial columns shaded, peripheral columns unshaded



Vincular patterns and beyond

Proposition
If p is any pattern with peripheral columns unshaded, then κ(p) = 1.

Proof
It suffices to consider consecutive patterns. Suppose |p| = k.
The probability of p occurring at a given position is 1/k!.
Occurrences of p at non-overlapping locations are independent.
Hence, P

[
σn avoids p

]
6 (1− 1/k!)bn/kc → 0.



Vincular patterns and beyond

Margins:
shaded columns at the left and right adjacent to an unshaded column

Proposition
If p is any pattern with margins of width w, then κ(p) = 1/w!.

κ = 1
2 κ = 1

6 κ = 1
24
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Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Double anchor: a point with all columns to the left or all columns to
the right shaded and all rows above or all rows below shaded

Proposition
If p has a double anchor, then κ(p) = 0.

Proof
The probability of the double anchor occurring is 1/n, which tends to 0.
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Frames

Frame: Only columns at left/right and rows at top/bottom shaded.

κ = 1
12

Proposition
If p is a frame with no double anchors, and with c shaded columns and
r shaded rows, then

κ(p) =
1

c!r!
.



Ladders

Ladder: shaded uprights and rungs

Fixed rung: two points touching both the rung and the uprights

Proposition
If p has a fixed rung, then κ(p) = 0.

Proof
The probability of two points that fix the rung occurring is 1/n.
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Ladders

κ = 1
12 κ = 1

36 κ = 1
24

Proposition
If p is a ladder with no double anchors or fixed rungs, and with c shaded
columns and r shaded rows, then

κ(p) =
1

c!r!
.



Anchor graphs

Anchor graph Gp of bivincular pattern p:
Points of p as vertices, and one edge for each shaded row or column,

• joining the two adjacent points, if the row or column is medial, or
• forming a loop (anchor) on the adjacent point, if it is peripheral.
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Anchor graphs

acyclic: no cycles

pseudoforest: not acyclic; no component has more than one cycle

polycyclic: some component has more than one cycle



The Trichotomy

If p is bivincular, then it would be nice if it were the case that
κ(p) = 0 if Gp is polycyclic

,

κ(p) ∈ (0, 1) if Gp is a pseudoforest

but not small anchored,

κ(p) = 1 if Gp is acyclic

or small anchored.

The three (or 16) small anchor graphs (κ = 1)

Gp is small anchored if it is a pseudoforest whose unicyclic
components form one of the small anchor graphs.

Corollary
If p has more shaded rows and columns than points, then κ(p) = 0.
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Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a.
pseudotree) anchor graph with a loop

Proposition
If p is a forest of anchored trees with c shaded columns and r shaded rows,
then κ(p) = 1/c!r!.

Proposition
Acyclic components don’t affect the likelihood.
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Rational likelihoods

Q: Is there a bivincular pattern whose likelihood is rational, but is
not the reciprocal of a product of two factorials?

Some non-bivincular patterns with other rational likelihoods

κ = 1
18 κ = 1

72 κ = 1
96

Q: Which rational numbers are likelihoods?



Small steps

Small ascent and small descent

Proposition (known since the 1940s)
If p is either the small ascent or the small descent, then

κ(p) = 1− e−1 ≈ 0.63212.

Q: Are the small steps the only bivincular patterns with likelihood
strictly between 1

2 and 1?

Q: What is the greatest likelihood less than 1?
κ = 1− J0(2) ≈ 0.77611
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The Chen–Stein Method

The essence of the Chen–Stein Method
If events are
• not too far from being independent, and
• asymptotically, the expected number that occur is constant, then
• the number that occur is asymptotically Poisson.

Small ascents
• Small ascents in σn at different positions are sufficiently close to

being independent.
• The expected number of small ascents in σn equals 1− 1/n.
• So the probability of avoiding a small ascent tends to e−1.
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Larger steps

(c, r)-step: c + r points,
c columns and r rows shaded, two points touching their intersection

Proposition

If p is a (c, r)-step, then κ(p) = 1− e−1/c! r!.

Proof
The expected number of occurrences of p is asymptotically 1/c!r!.



Multiple steps

κ =

∞∑
k=2

(
1− 1

k!

)e−1

k!
= 1− e−1I0(2) ≈ 0.16139,

where I0 is a modified Bessel function of the first kind.

Proposition
If p is a pattern consisting of small steps arranged to form the classical
pattern π, then

κ(p) = 1− e−1
∞∑

k=0

|Avk(π)|
k!2

.
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Steps and anchors

y
2
n

y
1
n

The number of small ascents in the region is asymptotically Poisson
with mean y2 − y1, so

κ =

∫ 1

0

∫ y2

0
1− e−(y2−y1) dy1 dy2 = 1

2 − e−1 ≈ 0.13212.

yn

xn

κ =

∫ 1

0

∫ 1

0
1− e−xy dx dy = 1− γ + Ei(−1) ≈ 0.20340,

where γ is Euler’s constant, and Ei is the exponential integral function.
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Lots of special functions

Pattern p κ(p)

(0, 1)-gridded 1-step e−1

(0, 2)-gridded 1-step 1
2 − e−1

(1, 1)-gridded 1-step 1− γ + Ei(−1)

(1, 2)-gridded 1-step 1
2 + e−1 − γ + Ei(−1)

(2, 2)-gridded 1-step 5
4 + e−1 − 2γ + 2Ei(−1)

(1, 1)-gridded pair of 1-steps 1− 2γ + 2Ei(−1) + 2e−1/2Shi(1
2)

(0, 1)-gridded split 2-step 1− e−1/4√π erfi(1
2)

two 1-steps 1− e−1I0(2)

three 1-steps 1− e−1
1F2(

1
2 ; 1, 2; 4)

(0, 1)-gridded pair of 1-steps e−1(2 + I1(2)− I2(2)
)
− 1



Beyond bivincular: Nesting

Proposition
Suppose q is bivincular and q1, . . . , qk are patterns for which κ(qi) is defined.
If p is formed by substituting q1, . . . , qk into k of q’s unshaded cells no pair of
which share a row or column, then

κ(p) = κ(q)
k∑

i=1

κ(qi).

κ = (1− e−1)2 ≈ 0.3995764



Iterated nesting

If |p| = 2k, then κ(p) = 2−k If |p| = 3k, then κ(p) = e−k

Thanks for listening!
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