Mesh patterns in random permutations

David Bevan

University of Strathclyde
Permutation Patterns 2023
Université de Bourgogne, Dijon, France
$3^{\text {rd }}$ July 2023

Work in progress

This is joint work with Jason Smith
(Nottingham Trent University).

This is work-in-progress.
(All claims are subject to correction.)

Mesh patterns

A mesh pattern: permutation with shaded cells
The permutation must occur, with the shaded regions empty.

An occurrence in a permutation

Mesh patterns

A mesh pattern: permutation with shaded cells
The permutation must occur, with the shaded regions empty.

An occurrence in a permutation

Mesh patterns

A mesh pattern: permutation with shaded cells
The permutation must occur, with the shaded regions empty.

An occurrence in a permutation

Likelihood

Likelihood of pattern p :
Asymptotic probability that a permutation contains a copy of p.

$$
\kappa(p)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n} \text { contains } p\right]
$$

where σ_{n} is a random n-permutation.

$$
\left|\mathrm{Av}_{n}(p)\right| \sim(1-\kappa(p)) n!
$$

Likelihood

Likelihood of pattern p :
Asymptotic probability that a permutation contains a copy of p.

$$
\kappa(p)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n} \text { contains } p\right]
$$

where σ_{n} is a random n-permutation.

$$
\left|\mathrm{Av}_{n}(p)\right| \sim(1-\kappa(p)) n!
$$

Observation (monotonicity)

The addition of shading never increases the likelihood.
If q is formed from p by shading some unshaded cells of p, then

$$
\kappa(q) \leqslant \kappa(p)
$$

Vincular patterns

Vincular pattern: each column fully shaded or fully unshaded Specifies adjacency requirements

- between points for medial columns, and
- to the start or end for peripheral columns.

Consecutive pattern: all medial columns shaded, peripheral columns unshaded

Vincular patterns and beyond

Proposition

If p is any pattern with peripheral columns unshaded, then $\kappa(p)=1$.

Proof

It suffices to consider consecutive patterns. Suppose $|p|=k$.
The probability of p occurring at a given position is $1 / k!$.
Occurrences of p at non-overlapping locations are independent. Hence, $\mathbb{P}\left[\boldsymbol{\sigma}_{n}\right.$ avoids $\left.p\right] \leqslant(1-1 / k!)^{\lfloor n / k\rfloor} \rightarrow 0$.

Vincular patterns and beyond

Margins:

 shaded columns at the left and right adjacent to an unshaded column

Vincular patterns and beyond

Margins:

 shaded columns at the left and right adjacent to an unshaded column
Proposition

If p is any pattern with margins of width w, then $\kappa(p)=1 / w$!.

$\kappa=\frac{1}{2}$

$\kappa=\frac{1}{6}$

$\kappa=\frac{1}{24}$

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Double anchor: a point with all columns to the left or all columns to the right shaded and all rows above or all rows below shaded

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Double anchor: a point with all columns to the left or all columns to the right shaded and all rows above or all rows below shaded

Proposition

If p has a double anchor, then $\kappa(p)=0$.

Proof

The probability of the double anchor occurring is $1 / n$, which tends to 0 .

Frames

Frame: Only columns at left/right and rows at top/bottom shaded.

$$
\kappa=\frac{1}{12}
$$

Proposition

If p is a frame with no double anchors, and with c shaded columns and r shaded rows, then

$$
\kappa(p)=\frac{1}{c!r!}
$$

Ladders

Ladder: shaded uprights and rungs

Ladders

Ladder: shaded uprights and rungs

Fixed rung: two points touching both the rung and the uprights

Ladders

Ladder: shaded uprights and rungs

Fixed rung: two points touching both the rung and the uprights

Proposition

If p has a fixed rung, then $\kappa(p)=0$.

Proof

The probability of two points that fix the rung occurring is $1 / n$.

Ladders

$\kappa=\frac{1}{12}$

$\kappa=\frac{1}{36}$

$\kappa=\frac{1}{24}$

Proposition

If p is a ladder with no double anchors or fixed rungs, and with c shaded columns and r shaded rows, then

$$
\kappa(p)=\frac{1}{c!r!} .
$$

Anchor graphs

Anchor graph G_{p} of bivincular pattern p :
Points of p as vertices, and one edge for each shaded row or column,

Anchor graphs

Anchor graph G_{p} of bivincular pattern p :
Points of p as vertices, and one edge for each shaded row or column,

- joining the two adjacent points, if the row or column is medial, or
- forming a loop (anchor) on the adjacent point, if it is peripheral.

Anchor graphs

$\kappa=1$

$\kappa=1$

$\kappa=1$

Anchor graphs

$\kappa=1$

$\kappa=1$

$\kappa=1$

$\kappa=\frac{1}{6}$

$\kappa=\frac{1}{6}$

$\kappa=\frac{1}{12}$

$\kappa=0$

$\kappa=0$

$\kappa=0$

Anchor graphs

acyclic: no cycles

pseudoforest: not acyclic; no component has more than one cycle

polycyclic: some component has more than one cycle

The Trichotomy

If p is bivincular, then it would be nice if it were the case that

$$
\begin{aligned}
& \kappa(p)=0 \quad \text { if } G_{p} \text { is polycyclic } \\
& \kappa(p) \in(0,1) \text { if } G_{p} \text { is a pseudoforest } \\
& \kappa(p)=1 \quad \text { if } G_{p} \text { is acyclic }
\end{aligned}
$$

The Small Anchors Theorem

If p is bivincular, then
$\kappa(p)=0 \quad$ if G_{p} is polycyclic,
$\kappa(p) \in(0,1)$ if G_{p} is a pseudoforest but not small anchored,
$\kappa(p)=1 \quad$ if G_{p} is acyclic or small anchored.
The three (or 16) small anchor graphs ($\kappa=1$)

G_{p} is small anchored if it is a pseudoforest whose unicyclic components form one of the small anchor graphs.

The Small Anchors Theorem

If p is bivincular, then
$\kappa(p)=0$ if G_{p} is polycyclic,
$\kappa(p) \in(0,1)$ if G_{p} is a pseudoforest but not small anchored, $\kappa(p)=1 \quad$ if G_{p} is acyclic or small anchored.

The three (or 16) small anchor graphs ($\kappa=1$)

G_{p} is small anchored if it is a pseudoforest whose unicyclic components form one of the small anchor graphs.

Corollary

If p has more shaded rows and columns than points, then $\kappa(p)=0$.

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Proposition

If p is a forest of anchored trees with c shaded columns and r shaded rows, then $\kappa(p)=1 / c!r!$.

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Proposition

If p is a forest of anchored trees with c shaded columns and r shaded rows, then $\kappa(p)=1 / c!r!$.

Proposition

Acyclic components don't affect the likelihood.

Rational likelihoods

Q: Is there a bivincular pattern whose likelihood is rational, but is not the reciprocal of a product of two factorials?

Some non-bivincular patterns with other rational likelihoods

$$
\kappa=\frac{1}{18}
$$

$$
\kappa=\frac{1}{72}
$$

$$
\kappa=\frac{1}{96}
$$

Q: Which rational numbers are likelihoods?

Small steps

Small ascent and small descent

Proposition (known since the 1940s)

If p is either the small ascent or the small descent, then

$$
\kappa(p)=1-e^{-1} \approx 0.63212
$$

Small steps

Small ascent and small descent

Proposition (known since the 1940s)

If p is either the small ascent or the small descent, then

$$
\kappa(p)=1-e^{-1} \approx 0.63212
$$

Q: Are the small steps the only bivincular patterns with likelihood strictly between $\frac{1}{2}$ and 1 ?

Q: What is the greatest likelihood less than 1 ?

$$
\because \quad \kappa=1-J_{0}(2) \approx 0.77611
$$

The Chen-Stein Method

The essence of the Chen-Stein Method

If events are

- not too far from being independent, and
- asymptotically, the expected number that occur is constant, then
- the number that occur is asymptotically Poisson.

The Chen-Stein Method

The essence of the Chen-Stein Method

 If events are- not too far from being independent, and
- asymptotically, the expected number that occur is constant, then
- the number that occur is asymptotically Poisson.

Small ascents

- Small ascents in σ_{n} at different positions are sufficiently close to being independent.
- The expected number of small ascents in σ_{n} equals $1-1 / n$.
- So the probability of avoiding a small ascent tends to e^{-1}.

Larger steps

(c,r)-step: $c+r$ points,
c columns and r rows shaded, two points touching their intersection

Proposition

If p is a (c, r)-step, then $\kappa(p)=1-e^{-1 / c!r!}$.

Proof

The expected number of occurrences of p is asymptotically $1 / c!r!$.

Multiple steps

$$
\kappa=\sum_{k=2}^{\infty}\left(1-\frac{1}{k!}\right) \frac{e^{-1}}{k!}=1-e^{-1} I_{0}(2) \approx 0.16139
$$

where I_{0} is a modified Bessel function of the first kind.

Multiple steps

$$
\kappa=\sum_{k=2}^{\infty}\left(1-\frac{1}{k!}\right) \frac{e^{-1}}{k!}=1-e^{-1} I_{0}(2) \approx 0.16139
$$

where I_{0} is a modified Bessel function of the first kind.

Proposition

If p is a pattern consisting of small steps arranged to form the classical pattern π, then

$$
\kappa(p)=1-e^{-1} \sum_{k=0}^{\infty} \frac{\left|A \mathrm{v}_{k}(\pi)\right|}{k!^{2}}
$$

Steps and anchors

The number of small ascents in the region is asymptotically Poisson with mean $y_{2}-y_{1}$, so

$$
\kappa=\int_{0}^{1} \int_{0}^{y_{2}} 1-e^{-\left(y_{2}-y_{1}\right)} d y_{1} d y_{2}=\frac{1}{2}-e^{-1} \approx 0.13212
$$

Steps and anchors

The number of small ascents in the region is asymptotically Poisson with mean $y_{2}-y_{1}$, so

$$
\kappa=\int_{0}^{1} \int_{0}^{y_{2}} 1-e^{-\left(y_{2}-y_{1}\right)} d y_{1} d y_{2}=\frac{1}{2}-e^{-1} \approx 0.13212
$$

$$
\kappa=\int_{0}^{1} \int_{0}^{1} 1-e^{-x y} d x d y=1-\gamma+\operatorname{Ei}(-1) \approx 0.20340
$$

where γ is Euler's constant, and Ei is the exponential integral function.

Lots of special functions

Pattern p	$\kappa(p)$
$(0,1)$-gridded 1-step	e^{-1}
$(0,2)$-gridded 1-step	$\frac{1}{2}-e^{-1}$
$(1,1)$-gridded 1-step	$1-\gamma+\operatorname{Ei}(-1)$
$(1,2)$-gridded 1-step	$\frac{1}{2}+e^{-1}-\gamma+\operatorname{Ei}(-1)$
$(2,2)$-gridded 1-step	$\frac{5}{4}+e^{-1}-2 \gamma+2 \operatorname{Ei}(-1)$
$(1,1)$-gridded pair of 1-steps	$1-2 \gamma+2 \operatorname{Ei}(-1)+2 e^{-1 / 2} \operatorname{Shi}\left(\frac{1}{2}\right)$
$(0,1)$-gridded split 2-step	$1-e^{-1 / 4} \sqrt{\pi}$ erfi $\left(\frac{1}{2}\right)$
two 1-steps	$1-e^{-1} I_{0}(2)$
three 1-steps	$1-e^{-1}{ }_{1} F_{2}\left(\frac{1}{2} ; 1,2 ; 4\right)$
(0,1)-gridded pair of 1-steps	$e^{-1}\left(2+I_{1}(2)-I_{2}(2)\right)-1$

Beyond bivincular: Nesting

Proposition

Suppose q is bivincular and q_{1}, \ldots, q_{k} are patterns for which $\kappa\left(q_{i}\right)$ is defined. If p is formed by substituting q_{1}, \ldots, q_{k} into k of q 's unshaded cells no pair of which share a row or column, then

$$
\kappa(p)=\kappa(q) \sum_{i=1}^{k} \kappa\left(q_{i}\right)
$$

Iterated nesting

If $|p|=2 k$, then $\kappa(p)=2^{-k}$

If $|p|=3 k$, then $\kappa(p)=e^{-k}$

Iterated nesting

If $|p|=2 k$, then $\kappa(p)=2^{-k}$

If $|p|=3 k$, then $\kappa(p)=e^{-k}$

Thanks for listening!

Some references

- Bevan \& Smith, On mesh pattern occurrence in random permutations, in preparation.
- Elizalde,

Asymptotic enumeration of permutations avoiding generalized patterns, 2006.

- Govc \& Smith, Asymptotic behaviour of the containment of certain mesh patterns, 2022.
- Hilmarsson, Jónsdóttir, Sigurðardóttir, Viðarsdóttir \& Ulfarsson, Wilf-classification of mesh patterns of short length, 2015.
- Kitaev \& Zhang,

Distributions of mesh patterns of short lengths, 2019.

- Kitaev, Zhang \& Zhang,

Distributions of several infinite families of mesh patterns, 2020.

