

Mesh patterns in random permutations

David Bevan University of Strathclyde

Permutation Patterns 2023 Université de Bourgogne, Dijon, France

3rd July 2023

Work in progress

This is joint work with Jason Smith (Nottingham Trent University).

This is work-in-progress. (All claims are subject to correction.)

Mesh patterns

A mesh pattern: permutation with shaded cells

The permutation must occur, with the shaded regions empty.

Mesh patterns

A mesh pattern: permutation with shaded cells

The permutation must occur, with the shaded regions empty.

Mesh patterns

A mesh pattern: permutation with shaded cells

The permutation must occur, with the shaded regions empty.

Likelihood

Likelihood of pattern *p*: Asymptotic probability that a permutation contains a copy of *p*.

$$\kappa(p) = \lim_{n \to \infty} \mathbb{P}[\boldsymbol{\sigma}_n \text{ contains } p],$$

where σ_n is a random *n*-permutation.

$$|\mathsf{Av}_n(p)| \sim (1-\kappa(p))n!$$

Likelihood

Likelihood of pattern *p*: Asymptotic probability that a permutation contains a copy of *p*.

$$\kappa(p) = \lim_{n \to \infty} \mathbb{P}[\boldsymbol{\sigma}_n \text{ contains } p],$$

where σ_n is a random *n*-permutation.

$$|\mathsf{Av}_n(p)| \sim (1-\kappa(p))n!$$

Observation (monotonicity)

The addition of shading never increases the likelihood.

If *q* is formed from *p* by shading some unshaded cells of *p*, then $\kappa(q) \leq \kappa(p).$ Vincular pattern: each column fully shaded or fully unshaded Specifies adjacency requirements

- between points for medial columns, and
- to the start or end for peripheral columns.

Consecutive pattern: all medial columns shaded, peripheral columns unshaded

Proposition

If p is any pattern with peripheral columns unshaded, then $\kappa(p) = 1$ *.*

Proof

It suffices to consider consecutive patterns. Suppose |p| = k. The probability of p occurring at a given position is 1/k!. Occurrences of p at non-overlapping locations are independent. Hence, $\mathbb{P}[\sigma_n \text{ avoids } p] \leq (1 - 1/k!)^{\lfloor n/k \rfloor} \rightarrow 0$.

Vincular patterns and beyond

Margins: shaded columns at the left and right adjacent to an unshaded column

Margins:

shaded columns at the left and right adjacent to an unshaded column

Proposition

If p is any pattern with margins of width w, then $\kappa(p) = 1/w!$ *.*

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Double anchor: a point with all columns to the left or all columns to the right shaded and all rows above or all rows below shaded

Bivincular patterns

Bivincular pattern: each shaded cell is in a shaded row or column

Double anchor: a point with all columns to the left or all columns to the right shaded and all rows above or all rows below shaded

Proposition

```
If p has a double anchor, then \kappa(p) = 0.
```

Proof

The probability of the double anchor occurring is 1/n, which tends to 0.

Frames

Frame: Only columns at left/right and rows at top/bottom shaded.

Proposition

If p is a frame with no double anchors, and with c shaded columns and r shaded rows, then

$$\kappa(p) = \frac{1}{c!r!}.$$

Ladder: shaded uprights and rungs

Ladder: shaded uprights and rungs

Fixed rung: two points touching both the rung and the uprights

Ladder: shaded uprights and rungs

Fixed rung: two points touching both the rung and the uprights

Proposition

If p has a fixed rung, then $\kappa(p) = 0$ *.*

Proof

The probability of two points that fix the rung occurring is 1/n.

Proposition

If p is a ladder with no double anchors or fixed rungs, and with c shaded columns and r shaded rows, then

$$\kappa(p) = \frac{1}{c!r!}.$$

Anchor graph G_p of bivincular pattern p: Points of p as vertices, and one edge for each shaded row or column, Anchor graph G_p of bivincular pattern p:

Points of *p* as vertices, and one edge for each shaded row or column,

- joining the two adjacent points, if the row or column is medial, or
- forming a loop (anchor) on the adjacent point, if it is peripheral.

Anchor graphs

Anchor graphs

Anchor graphs

pseudoforest: not acyclic; no component has more than one cycle

polycyclic: some component has more than one cycle

The Trichotomy

If *p* is bivincular, then *it* would be nice if it were the case that

 $\kappa(p) = 0$ if G_p is polycyclic $\kappa(p) \in (0, 1)$ if G_p is a pseudoforest $\kappa(p) = 1$ if G_p is acyclic

If p is bivincular, then

$$\kappa(p) = 0$$
 if G_p is polycyclic,

- $\kappa(p) \in (0,1)$ if G_p is a pseudoforest **but not small anchored**,
- $\kappa(p) = 1$ if G_p is acyclic or small anchored.

The three (or 16) small anchor graphs ($\kappa = 1$)

 G_p is small anchored if it is a pseudoforest whose unicyclic components form one of the small anchor graphs.

If p is bivincular, then

$$\kappa(p) = 0$$
 if G_p is polycyclic,

- $\kappa(p) \in (0,1)$ if G_p is a pseudoforest **but not small anchored**,
- $\kappa(p) = 1$ if G_p is acyclic or small anchored.

The three (or 16) small anchor graphs ($\kappa = 1$)

 G_p is small anchored if it is a pseudoforest whose unicyclic components form one of the small anchor graphs.

Corollary

If p has more shaded rows and columns than points, then $\kappa(p) = 0$ *.*

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Proposition

If p is a forest of anchored trees with c shaded columns and r shaded rows, then $\kappa(p) = 1/c!r!$.

Anchored trees

Anchored tree: bivincular pattern having a connected unicyclic (a.k.a. pseudotree) anchor graph with a loop

Proposition

If p is a forest of anchored trees with c shaded columns and r shaded rows, then $\kappa(p) = 1/c!r!$.

Proposition

Acyclic components don't affect the likelihood.

Rational likelihoods

Q: Is there a *bivincular* pattern whose likelihood is rational, but is not the reciprocal of a product of two factorials?

Some non-bivincular patterns with other rational likelihoods

Q: Which rational numbers are likelihoods?

Proposition (known since the 1940s)

If p is either the small ascent or the small descent, then

$$\kappa(p) = 1 - e^{-1} \approx 0.63212.$$

Proposition (known since the 1940s)

If p is either the small ascent or the small descent, then

$$\kappa(p) = 1 - e^{-1} \approx 0.63212.$$

Q: Are the small steps the only *bivincular* patterns with likelihood strictly between $\frac{1}{2}$ and 1?

 \mathcal{Q} : What is the greatest likelihood less than 1? $\kappa = 1 - J_0(2) \approx 0.77611$

The Chen–Stein Method

The essence of the Chen–Stein Method

If events are

- not too far from being independent, and
- asymptotically, the expected number that occur is constant, then
- the number that occur is asymptotically Poisson.

The Chen–Stein Method

The essence of the Chen–Stein Method

If events are

- not too far from being independent, and
- asymptotically, the expected number that occur is constant, then
- the number that occur is asymptotically Poisson.

Small ascents

- Small ascents in *σ*^{*n*} at different positions are sufficiently close to being independent.
- The expected number of small ascents in σ_n equals 1 1/n.
- So the probability of avoiding a small ascent tends to e^{-1} .

(c, r)-step: c + r points, *c* columns and *r* rows shaded, two points touching their intersection

Proposition

If p is a (c, r)-step, then $\kappa(p) = 1 - e^{-1/c! r!}$.

Proof

The expected number of occurrences of *p* is asymptotically 1/c!r!.

Multiple steps

$$\kappa = \sum_{k=2}^{\infty} \left(1 - \frac{1}{k!} \right) \frac{e^{-1}}{k!} = 1 - e^{-1} I_0(2) \approx 0.16139,$$

where I_0 is a modified Bessel function of the first kind.

Multiple steps

$$\kappa = \sum_{k=2}^{\infty} \left(1 - \frac{1}{k!} \right) \frac{e^{-1}}{k!} = 1 - e^{-1} I_0(2) \approx 0.16139,$$

where I_0 is a modified Bessel function of the first kind.

Proposition

If p is a pattern consisting of small steps arranged to form the classical pattern π , then

$$\kappa(p) \; = \; 1 - e^{-1} \, \sum_{k=0}^{\infty} \frac{|\mathsf{Av}_k(\pi)|}{k!^2}.$$

The number of small ascents in the region is asymptotically Poisson with mean $y_2 - y_1$, so

$$\kappa = \int_0^1 \int_0^{y_2} 1 - e^{-(y_2 - y_1)} \, dy_1 \, dy_2 = \frac{1}{2} - e^{-1} \approx 0.13212.$$

The number of small ascents in the region is asymptotically Poisson with mean $y_2 - y_1$, so

$$\kappa = \int_0^1 \int_0^{y_2} 1 - e^{-(y_2 - y_1)} dy_1 dy_2 = \frac{1}{2} - e^{-1} \approx 0.13212.$$

where γ is Euler's constant, and Ei is the exponential integral function.

Pattern <i>p</i>	$\kappa(p)$
(0,1)-gridded 1-step	e^{-1}
(0,2)-gridded 1-step	$\frac{1}{2} - e^{-1}$
(1,1)-gridded 1-step	$1 - \gamma + \operatorname{Ei}(-1)$
(1,2)-gridded 1-step	$\tfrac{1}{2} + e^{-1} - \gamma + \operatorname{Ei}(-1)$
(2,2)-gridded 1-step	$rac{5}{4} + e^{-1} - 2\gamma + 2\mathrm{Ei}(-1)$
(1,1)-gridded pair of 1-steps	$1 - 2\gamma + 2\text{Ei}(-1) + 2e^{-1/2}\text{Shi}(\frac{1}{2})$
(0,1)-gridded split 2-step	$1 - e^{-1/4}\sqrt{\pi}\operatorname{erfi}(\frac{1}{2})$
two 1-steps	$1 - e^{-1}I_0(2)$
three 1-steps	$1 - e^{-1} {}_1F_2(\frac{1}{2}; 1, 2; 4)$
(0,1)-gridded pair of 1-steps	$e^{-1}(2+I_1(2)-I_2(2))-1$

Proposition

Suppose q is bivincular and q_1, \ldots, q_k are patterns for which $\kappa(q_i)$ is defined. If p is formed by substituting q_1, \ldots, q_k into k of q's unshaded cells no pair of which share a row or column, then

$$\kappa(p) = \kappa(q) \sum_{i=1}^{\kappa} \kappa(q_i).$$

Iterated nesting

Iterated nesting

Thanks for listening!

Some references

• Bevan & Smith,

On mesh pattern occurrence in random permutations, in preparation.

• Elizalde,

Asymptotic enumeration of permutations avoiding generalized patterns, 2006.

• Govc & Smith,

Asymptotic behaviour of the containment of certain mesh patterns, 2022.

- Hilmarsson, Jónsdóttir, Sigurðardóttir, Viðarsdóttir & Ulfarsson, Wilf-classification of mesh patterns of short length, 2015.
- Kitaev & Zhang, Distributions of mesh patterns of short lengths, 2019.
- Kitaev, Zhang & Zhang, Distributions of several infinite families of mesh patterns, 2020.