Enumerating grid signed permutation classes

Saúl A. Blanco
Joint work with Daniel Skora
Indiana University
July 4, 2023
Permutation Patterns 2023
University of Burgundy Dijon, France

The pancake problem

The original statement

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest on the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary. If there are n pancakes, what is the maximum number of flips (as a function of n) that I will ever have to use to rearrange them?
-Harry Dweighter, December 1975. American Math. Monthly

Pancake flip illustration

Pancake flip illustration

Pancake flip illustration

Figure: 214635

Pancake flip illustration

Figure: 214635

Figure: 412635

Largest pancake first algorithm

Example

Largest pancake first algorithm

Example

Largest pancake first algorithm

Example

$$
2415351423324154231513245312452134512345
$$

Largest pancake first algorithm

Example

Largest pancake first algorithm

Example

Largest pancake first algorithm

Example

2415351423324154231513245312452134512345
This took 7 flips!

There is a shorter sequence

Example

241535142332415234154321512345

There is a shorter sequence

Example

241535142332415234154321512345

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

There is a shorter sequence

Example

This took 5 flips!

$f(n)$, some of what is known

■ Exact value known for $n \leq 22$.

$f(n)$, some of what is known

■ Exact value known for $n \leq 22$.
■ Simplest algorithm: flip largest to top, then into place. $f(n) \leq 2 n$.

$f(n)$, some of what is known

- Exact value known for $n \leq 22$.

■ Simplest algorithm: flip largest to top, then into place. $f(n) \leq 2 n$.

- Improved algorithm: Bill Gates and Christos Papadimitriou (1979). $f(n) \leq \frac{5 n+3}{3}$. (about $1.666 n$).

$f(n)$, some of what is known

- Exact value known for $n \leq 22$.

■ Simplest algorithm: flip largest to top, then into place. $f(n) \leq 2 n$.

- Improved algorithm: Bill Gates and Christos Papadimitriou (1979).
$f(n) \leq \frac{5 n+3}{3}$. (about $1.666 n$).
■ Improved algorithm: Chitturi et al. (2008). $f(n) \leq \frac{18}{11} n+O(1)$ (about 1.6363n).

$f(n)$, some of what is known

■ Exact value known for $n \leq 22$.
■ Simplest algorithm: flip largest to top, then into place. $f(n) \leq 2 n$.
■ Improved algorithm: Bill Gates and Christos Papadimitriou (1979). $f(n) \leq \frac{5 n+3}{3}$. (about $1.666 n$).

- Improved algorithm: Chitturi et al. (2008). $f(n) \leq \frac{18}{11} n+O(1)$ (about 1.6363n).

■ Pancake sorting is NP-hard: Laurent Bulteau, et al. (2015). To be specific, finding the optimal sequence of flips to sort a stack is NP-hard

Source: Neil Jones and Pavel Pevzner, 2004 "Introduction to Biolnformatics Algorithms"

Some applications of pancake sorting

Figure: Genome rearrangements

Figure: Parallel processing

Pancake graphs

We can think of these pancake flips as prefix-reversal generators of the symmetric group S_{n}

$$
r_{i}=i(i-1) \cdots 1(i+1)(i+2) \cdots n,
$$

with $2 \leq i \leq n$.

Pancake graph P_{4}

How many stacks of n pancakes take exactly k flips to be sorted?

A great deal is known about the structure of cycles in P_{n}. In particular, there is only one type of 6 -cycle, and this is the shortest cycle that it exists.
1 If $k=0$, then 1 .

2 If $k=1$, then $n-1$.

3 If $k=2$, then $(n-1)(n-2)$.

4 If $k=3$, then $(n-1)(n-2)^{2}-1$ (the " -1 " comes from the one 6 -cycle)

Stacks which require k flips to be sorted
one bicycle

There are $(n-1)(n-2)(n-2)-1$ permutations that require exactly 3 flips to be sorted.

How many stacks of n pancakes take exactly 4 flips to be sorted?

Theorem

(B., Buehrle, and Patidar 2019) If $n \geq 3$, there are

$$
\frac{1}{2}\left(2 n^{4}-15 n^{3}+29 n^{2}+6 n-34\right)
$$

stacks of n pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of 7- and 8 -cylces in P_{n} and PIE. It was a lot of book keeping.

There's gotta to be a better way!

The Homberger-Vatter Algorithm (2016)

Vince Vatter emailed us to tell us about their 2016 paper

On the effective and automatic enumeration of polynomial permutation classes
Cheyne Homberger ${ }^{\text {a }}$, Vincent Vatter ${ }^{\text {b, }}{ }^{1}$

Permutation classes that are eventually polynomial

The Fibonacci Dichotomy of Kaiser and Klazar (2003) : If \mathcal{C} is a permutation class with $\left|\mathcal{C} \cap S_{n}\right|<F_{n}$ for some n, then $\left|\mathcal{C} \cap S_{n}\right|$ is given by a polynomial for sufficiently large n.

The HVA algorithm finds this polynomial.

It turns out that the permutations that take at most k flips to be sorted is a permutation class which can be eventually enumerated by polynomials (it might miss the first few values of n.)

Burnt pancakes

Defined by Gates and Papadimitriou: Suppose pancakes now have an orientation. Our goal is to sort them by size and orientation.

A signed permutation is defined as a permutation w of the set

$$
\{-n,-(n-1), \ldots,-1,1,2, \ldots, n\}
$$

satisfying $w(-i)=-w(i)$ for all i. Usually we overline negative entries and write \bar{i} instead of $-i$.

Normally one uses window notation and denotes w by $[w(1), w(2), \ldots, w(n)]$.

In this case, prefix reversals are

$$
r_{i}=[\bar{i}, \overline{i-1}, \ldots, \overline{1}, i+1, i+2, \ldots, n]
$$

for $1 \leq i \leq n$.

Burnt pancake graph $B P_{n}$

Figure: $B P_{2}$ is an 8 -cycle.

Rat Consortium, Nature, 2004

How many stacks of n burnt pancakes take exactly k flips to be sorted?

A great deal is known about the structure of cycles in $B P_{n}$. In particular, we know what 8 -cycles are possible (this was an earlier result by our "group.")
1 If $k=0$, then 1 .

2 If $k=1$, then n.

3 If $k=2$, then $n(n-1)$.

4 If $k=3$, then $n(n-1)^{2}$.

How many stacks of n burnt pancakes take exactly 4 flips to be sorted?

Theorem

(B., Buehrle, and Patidar 2019) If $n \geq 1$, there are

$$
\frac{1}{2} n(n-1)^{2}(2 n-3)
$$

stacks of n burnt pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of and 8 and 9 -cylces in $B P_{n}$ and PIE. It was a lot of book keeping.

There'a gotta to be a better way!

How many stacks of n burnt pancakes take exactly 4 flips to be sorted?

Theorem

(B., Buehrle, and Patidar 2019) If $n \geq 1$, there are

$$
\frac{1}{2} n(n-1)^{2}(2 n-3)
$$

stacks of n burnt pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of and 8 and 9 -cylces in $B P_{n}$ and PIE. It was a lot of book keeping.

There'a gotta to be a better way! There is.

Extending HVA to signed permutations

Theorem ((B. and Skora), very informal version)
There is an algorithm to enumerate certain signed permutation classes (grid signed permutation classes) that include the class of stacks of burnt pancakes that take at most k flips to be sorted.

The algorithm has three steps: Completion, compacting, and enumeration.

Inflating a signed permutation

Let $\pi \in B_{k}$ (group of all signed permutations of length k) and $\mathbf{v} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$ denote the set of all k-dimensional vectors with positive integers components.
Let's say $\pi=\pi_{1} \pi_{2} \cdots \pi_{k}$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. Inflating π by \mathbf{v}, denoted by $\pi[\mathbf{v}]$, means

- Replacing each character π_{i} by a monotone interval of length v_{i}.
- The interval must be increasing if π_{i} is positive and decreasing if π_{i} is negative.
■ Each of the elements of the interval has the same sign as π_{i}.
■ Finally, the order of these intervals must match the order of the entries of π.

> Example
> $\overline{1} 2[(3,4)]=\overline{3} \overline{2} \overline{1} 4567,21 \overline{3}[(2,0,3)]=12 \overline{5} \overline{4} \overline{3}$.

Grid signed permutation classes

The grid class of a $\pi \in B_{k}$, written $\operatorname{Grid}(\pi)$, is the set of signed permutations

$$
\left\{\pi[\mathbf{v}]: \mathbf{v} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}\right\}
$$

If Π is a set of signed permutations (not necessarily of the same length) then $\operatorname{Grid}(\Pi)$ is given by

$$
\{\operatorname{Grid}(\pi): \pi \in \Pi\} .
$$

It is easy to see that $\operatorname{Grid}(\Pi)$ is closed under containment (thus a permutation class).

We say that $\pi \in \Pi$ is compact if $\pi^{\prime}<\pi$ implies that $\operatorname{Grid}\left(\pi^{\prime}\right) \subset \operatorname{Grid}(\pi)$ (strict inequality and inclusion). For example 12 is NOT compact since $1<12$ and $\operatorname{Grid}(\{1\})=\operatorname{Grid}(\{12\})$.

Enumerating Grid(П)

1. Completion: Add all $\sigma \leq \overline{2} 13$. We get

$$
\{\varepsilon, 1, \overline{1}, 12, \overline{1} 2, \overline{2} 1, \overline{2} 13\}
$$

2. Compacting: Remove non-compact signed permutations

$$
\{\varepsilon, 1, \overline{1}, 1 \not 2, \overline{1} 2, \overline{2} 1, \overline{2} 13\}
$$

3. Enumeration: The generating function enumerating the vectors of length m with positive integers is $\left(\frac{x}{1-x}\right)^{m}$. So

- 1 for the empty permutation ε
- $\frac{x}{1-x}=\sum_{n \geq 0} x^{n+1}$ for 1 and $\overline{1}$,
- $\frac{x^{2}}{(1-x)^{2}}=\sum_{n \geq 0}(n+1) x^{n+2}$ for $\overline{1} 2$ and $\overline{2} 1$, and
- $\frac{x^{3}}{(1-x)^{3}}=\sum_{n \geq 0}\binom{n+2}{2} x^{n+3}$ for $\overline{2} 13$.

Enumerating Grid(П)

Therefore, by isolating the coefficient of x^{n} with $n \geq 1$ in the expansion of

$$
1+\frac{2 x}{1-x}+\frac{2 x^{2}}{(x-1)^{2}}+\frac{x^{3}}{(1-x)^{3}}
$$

we obtain the polynomial

$$
P(n)=2+2(n-1)+\binom{n-1}{2}=\frac{n^{2}}{2}+\frac{n}{2}+1
$$

Stacks of burnt pancakes that take at most k flips to be sorted

- $\operatorname{Grid}(\{\overline{1} 2\})$ is the class representing the stacks of burnt pancakes that take at most one flip to be sorted. The algorithm outputs $n+1$.
- $\operatorname{Grid}(\{2 \overline{1} 3, \overline{2} 13\})$ is the class representing the stacks of burnt pancakes that take at most two flips to be sorted. The algorithm outputs $n^{2}+1$.
- There are

$$
n^{5}-\frac{29}{6} n^{4}+\frac{17}{2} n^{3}-\frac{26}{6} n^{2}+\frac{1}{2} n+1
$$

stacks of burnt pancakes that require at most 5 flips to be sorted, etc...

- These polynomials work for all $n \geq 1$ (they don't miss any values like in the case of S_{n}.)

Thank you!

