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Given a class C, what properties guarantee a ‘tame’ enumeration?



Finitely many simple permutations

Theorem (Albert and Atkinson 2005)

If a class C contains only finitely many simple permutations, then it has an
algebraic generating function and is finitely based.

f (z) = +
f ̸⊕(z)

f (z)
+

f̸⊖(z)

f (z)
+

f2(z)

f4(z)

f1(z)

f3(z)
+ · · ·



Geometrically griddable classes

Theorem (Albert, Atkinson, Bouvel, Ruškuc and Vatter 2013)

If a class C is geometrically griddable, then it has a rational generating
function and is finitely based.

←→ regular language
over finite alphabet



Non-example: two stacks in series

π1 · · ·πn1 · · ·n

Pierrot & Rossin (2017) Membership is polynomial time

Elvey Price & Guttman (2017) Exact enumeration to length 20
Generating function ∼ A(1 − µ · z)γ

Murphy (2003) Not finitely based



Finitely based classes

All classes that have finitely many simples, or that are geometrically
griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Theorem (Garrabrant, Pak, 2015)

Zeilberger is right: Noonan-Zeilberger is false.
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So ‘finitely based’ isn’t universally tame. Nevertheless. . .

Conjecture

Every finitely based class with growth rate < 4 has a rational generating
function.
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Given a class C, what properties guarantee a ‘tame’ enumeration?



Av(231) Av(321)
Growth rate 4 4

Generating function 1 −
√

1 − 4z
2z

1 −
√

1 − 4z
2z

Basis 231 321

‘Look like’
Av(231)

Av(231)

· ·· ·· ·
· ·· ·
· ·· ·· ·
· ·· ·· ·
· ·· ·
· ·· ·· ·
· ·· ·· ·
· ·· ·
· ·· ·· ·



Subclasses of Av(231), Av(321)

C ⊊ Av(231) D ⊊ Av(321)

Growth rate
Countably many

possibilities
Includes [2.36, 2.48]

(Bevan, 2018)

Generating function
Rational (Albert,
Atkinson, 2005)

Could be anything

Basis Finite Finite or infinite

Infinite antichains? No Yes: . . .
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A permutation class is well-quasi-ordered (WQO) if it contains no
infinite antichains.

A strong indicator of ‘tameness’, for example, even though Av(321) is
not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating
function.

Conjecture (Vatter, 2015)

Every WQO permutation class has an algebraic generating function.F A L S E
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Prouhet-Thue-Morse

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 · · ·

Prouhet-Thue-Morse is uniformly recurrent =⇒ P is WQO.
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w2 = 01 10
w3 = 0110 1001

...
wn = wn−1wn−1
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P = {permutations π contained in πwi for some i}
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Prouhet-Thue-Morse ‘(1, 1, 1, . . . )’
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fP(z) = 1 + z + 2z2 + 6z3 + 22z4

+ 80z5 + 276z6 + 948z7

+ 3276z8 + · · ·

Sequence ‘(2, 1, 1, 1, . . . )’

010110101010010110100101 · · ·

Q = Sub



· · ·

· · ·


fQ(z) = 1 + z + 2z2 + 6z3 + 22z4

+ 80z5 + 276z6 + 948z7

+ 3264z8 + · · ·



Theorem
There are uncountably many WQO permutation classes with distinct
enumerations.

• Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers
(si) into a binary sequence.

(1, 1, . . . )→ 01101001 · · ·
• Pin sequences: Turn a binary sequence into a permutation class

01101001 · · · → Sub


· · ·

· · ·


• The binary sequences are uniformly recurrent

=⇒ permutation classes are WQO

• The binary sequences have different complexity functions
=⇒ permutation classes have different enumerations
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Theorem
There are uncountably many WQO permutation classes with distinct
enumerations.

Corollary

There exist WQO permutation classes that do not have algebraic (or even
D-finite) generating functions.



Concluding remarks

About these classes:
• Are the growth rates distinct?

Growth rate < 4 conjecture:
• Not true if we replace ‘finitely based’ with ‘WQO’.

In search of ‘tame’ enumeration:
• Is labelled WQO enough to guarantee algebraic g.f.s?
• (Note: LWQO =⇒WQO + finitely based.)
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Merci!


