Uncountably many well-quasi-ordered permutation classes

Robert Brignall

Joint work with Vince Vatter (U. Florida)

Permutation Patterns 2023, Université de Bourgogne, 3 July 2023

Given a class \mathcal{C} , what properties guarantee a 'tame' enumeration?

Finitely many simple permutations

Theorem (Albert and Atkinson 2005)

If a class C *contains only finitely many simple permutations, then it has an algebraic generating function and is finitely based.*

Theorem (Albert, Atkinson, Bouvel, Ruškuc and Vatter 2013)

If a class C *is geometrically griddable, then it has a rational generating function and is finitely based.*

Non-example: two stacks in series

Pierrot & Rossin (2017) Membership is polynomial time

Elvey Price & Guttman (2017) Exact enumeration to length 20 Generating function ~ $A(1 - \mu \cdot z)^{\gamma}$

Murphy (2003) Not finitely based

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Theorem (Garrabrant, Pak, 2015)

Zeilberger is right: Noonan-Zeilberger is false.

So 'finitely based' isn't universally tame. Nevertheless...

So 'finitely based' isn't universally tame. Nevertheless...

Conjecture

Every finitely based class with growth rate < 4 has a rational generating function.

Given a class \mathcal{C} , what properties guarantee a 'tame' enumeration?

Subclasses of Av(231), Av(321)

	$\mathfrak{C}\subsetneq Av(231)$	$\mathcal{D}\subsetneq Av(321)$
Growth rate	Countably many possibilities	Includes [2.36, 2.48] (Bevan, 2018)
Generating function	Rational (Albert, Atkinson, 2005)	Could be anything
Basis	Finite	Finite or infinite

Subclasses of Av(231), Av(321)

	$\mathfrak{C}\subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes [2.36, 2.48] (Bevan, 2018)
Generating function	Rational (Albert, Atkinson, 2005)	Could be anything
Basis	Finite	Finite or infinite
Infinite antichains?	No	Yes:

A strong indicator of 'tameness', for example, even though Av(321) is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating function.

A strong indicator of 'tameness', for example, even though Av(321) is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating function.

Conjecture (Vatter, 2015)

Every WQO permutation class has an algebraic generating function.

A strong indicator of 'tameness', for example, even though Av(321) is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating function.

Conjecture (Vatter, 2015) Every WQO permutation classian algebraic generating function.

0 1 1 0 1 0 0 0 1 1 0 . . .

Prouhet-Thue-Morse

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 \cdots

Prouhet-Thue-Morse

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 \cdots

$$w_1 = 01$$

 $w_2 = 01 \, 10$
 $w_3 = 0110 \, 1001$
 \vdots
 $w_n = w_{n-1} \overline{w_{n-1}}$

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 \cdots

 $\mathcal{P} = \{\text{permutations } \pi \text{ contained in } \pi_{w_i} \text{ for some } i\}$

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 \cdots

 $\mathcal{P} = \{\text{permutations } \pi \text{ contained in } \pi_{w_i} \text{ for some } i\}$

Prouhet-Thue-Morse is uniformly recurrent $\implies \mathcal{P}$ is WQO.

Prouhet-Thue-Morse '(1, 1, 1, ...)'

$$w_1 = 01$$

 $w_2 = 01 \, 10$
 $w_3 = 0110 \, 1001$
 \vdots
 $w_n = w_{n-1} \overline{w_{n-1}}$

Generates the sequence 011010011001011010010110....

$$w_1 = 01$$

 $w_2 = 01\,10$
 $w_3 = 0110\,1001$
 \vdots

$$w_n = w_{n-1}\overline{w_{n-1}}$$

Generates the sequence 011010011001011010010110.... $v_1 = 01$ $v_2 = 01\,01\,10\,10$ $v_3 = 01011010\,10100101$

:

$$w_1 = 01$$

 $w_2 = 01\,10$
 $w_3 = 0110\,1001$
 \vdots
 $w_n = w_{n-1}\overline{w_{n-1}}$

Generates the sequence 011010011001011010010110....

$$v_{1} = 01$$

$$v_{2} = 01 \ 01 \ 10 \ 10$$

$$v_{3} = 01011010 \ 10100101$$

$$\vdots$$

$$v_{2} = v_{1}v_{1}\overline{v_{1}v_{1}}$$

$$v_{n} = v_{n-1}\overline{v_{n-1}} \quad (n > 2)$$

$$w_1 = 01$$

 $w_2 = 01\,10$
 $w_3 = 0110\,1001$
 \vdots
 $w_n = w_{n-1}\overline{w_{n-1}}$

Generates the sequence 011010011001011010010110....

$$v_{1} = 01$$

$$v_{2} = 01 \ 01 \ 10 \ 10$$

$$v_{3} = 01011010 \ 10100101$$

$$\vdots$$

$$v_{2} = v_{1}v_{1}\overline{v_{1}v_{1}}$$

$$v_{n} = v_{n-1}\overline{v_{n-1}} \quad (n > 2)$$

Generates the sequence 010110101010010110100101....

$$w_1 = 01$$

 $w_2 = 01\,10$
 $w_3 = 0110\,1001$
 \vdots
 $w_n = w_{n-1}\overline{w_{n-1}}$

Generates the sequence 011010011001011010010110.... $v_{1} = 01$ $v_{2} = 01 \ 01 \ 10 \ 10$ $v_{3} = 01011010 \ 10100101$ \vdots $v_{2} = v_{1}v_{1}\overline{v_{1}v_{1}}$ $v_{n} = v_{n-1}\overline{v_{n-1}} \quad (n > 2)$

Generates the sequence 010110101010010110100101....

There are uncountably many WQO permutation classes with distinct enumerations.

There are uncountably many WQO permutation classes with distinct enumerations.

• Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.

 $(1,1,\dots) \rightarrow 01101001\cdots$

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.
 - $(1,1,\ldots) \rightarrow 01101001\cdots$
- Pin sequences: Turn a binary sequence into a permutation class

There are uncountably many WOO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.
 - $(1,1,\ldots) \rightarrow 01101001\cdots$
- Pin sequences: Turn a binary sequence into a permutation class

The binary sequences are uniformly recurrent

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.
 - $(1,1,\dots) \rightarrow 01101001\cdots$
- Pin sequences: Turn a binary sequence into a permutation class

• The binary sequences are uniformly recurrent

 \implies permutation classes are WQO

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.
 - $(1,1,\ldots) \rightarrow 01101001\cdots$
- Pin sequences: Turn a binary sequence into a permutation class

The binary sequences are uniformly recurrent

 \implies permutation classes are WOO

• The binary sequences have different complexity functions

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers (s_i) into a binary sequence.
 - $(1,1,\ldots) \rightarrow 01101001\cdots$
- Pin sequences: Turn a binary sequence into a permutation class

The binary sequences are uniformly recurrent

 \implies permutation classes are WOO

 The binary sequences have different complexity functions \implies permutation classes have different enumerations

There are uncountably many WQO permutation classes with distinct enumerations.

Corollary

There exist WQO *permutation classes that do not have algebraic (or even D-finite) generating functions.*

About these classes:

• Are the growth rates distinct?

About these classes:

• Are the growth rates distinct?

Growth rate < 4 conjecture:

• *Not* true if we replace 'finitely based' with 'WQO'.

About these classes:

• Are the growth rates distinct?

Growth rate < 4 conjecture:

• *Not* true if we replace 'finitely based' with 'WQO'.

In search of 'tame' enumeration:

- Is labelled WQO enough to guarantee algebraic g.f.s?
- (Note: LWQO \implies WQO + finitely based.)

Merci!