Uncountably many well-quasi-ordered permutation classes

Robert Brignall

Joint work with Vince Vatter (U. Florida)

Permutation Patterns 2023, Université de Bourgogne, 3 July 2023

Given a class \mathcal{C}, what properties guarantee a 'tame' enumeration?

Finitely many simple permutations

Theorem (Albert and Atkinson 2005)

If a class \mathcal{C} contains only finitely many simple permutations, then it has an algebraic generating function and is finitely based.

Geometrically griddable classes

Theorem (Albert, Atkinson, Bouvel, Ruškuc and Vatter 2013)
If a class \mathfrak{C} is geometrically griddable, then it has a rational generating function and is finitely based.

regular language over finite alphabet

Non-example: two stacks in series

Pierrot \& Rossin (2017) Membership is polynomial time

Elvey Price \& Guttman (2017) Exact enumeration to length 20 Generating function $\sim A(1-\mu \cdot z)^{\gamma}$

Murphy (2003) Not finitely based

Finitely based classes

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)
Every finitely based class has a D-finite generating function.

Finitely based classes

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)
Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Finitely based classes

All classes that have finitely many simples, or that are geometrically griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)
Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Theorem (Garrabrant, Pak, 2015)
Zeilberger is right: Noonan-Zeilberger is false.

So 'finitely based' isn't universally tame. Nevertheless. . .

So 'finitely based' isn't universally tame. Nevertheless. . .

Conjecture

Every finitely based class with growth rate <4 has a rational generating function.

Given a class \mathcal{C}, what properties guarantee a 'tame' enumeration?

Subclasses of $\operatorname{Av}(231), \operatorname{Av}(321)$

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes $[2.36,2.48]$ (Bevan, 2018)

Generating function

Basis

Rational (Albert, Atkinson, 2005)

Could be anything

Finite
Finite or infinite

Subclasses of $\operatorname{Av}(231), \operatorname{Av}(321)$

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes $[2.36,2.48]$ (Bevan, 2018)

Generating function

Basis

Infinite antichains?

Rational (Albert, Atkinson, 2005)

Could be anything

Finite or infinite

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

A strong indicator of 'tameness', for example, even though $\operatorname{Av}(321)$ is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)
Every WQO or finitely based subclass of Av(321) has a rational generating function.

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

A strong indicator of 'tameness', for example, even though $\operatorname{Av}(321)$ is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)
Every WQO or finitely based subclass of Av(321) has a rational generating function.

Conjecture (Vatter, 2015)

Every WQO permutation class has an algebraic generating function.

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

A strong indicator of 'tameness', for example, even though $\operatorname{Av}(321)$ is not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)
Every WQO or finitely based subclass of Av(321) has a rational generating function.

Conjecture (Vatter, 2015)
Every WQO permutatiFcla sias algebraic generating function.

$\begin{array}{llllllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \cdots\end{array}$

Binary word $w \longrightarrow$ permutation π_{w}

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \cdots
\end{array}
$$

$$
\begin{array}{llllllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \cdots
\end{array}
$$

Binary word $w \longrightarrow$ permutation π_{w}
$\begin{array}{llllllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \cdots\end{array}$

Binary word $w \longrightarrow$ permutation π_{w}

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \cdots
\end{array}
$$

Binary word $w \longrightarrow$ permutation π_{w}

Binary word $w \longrightarrow$ permutation π_{w}

Prouhet-Thue-Morse

$01101001100101101001011001101001100101100110100101101001 \ldots$

Prouhet-Thue-Morse

$01101001100101101001011001101001100101100110100101101001 \ldots$

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Prouhet-Thue-Morse

$01101001100101101001011001101001100101100110100101101001 \ldots$

$$
\mathcal{P}=\left\{\text { permutations } \pi \text { contained in } \pi_{w_{i}} \text { for some } i\right\}
$$

Prouhet-Thue-Morse

$01101001100101101001011001101001100101100110100101101001 \ldots$

$$
\mathcal{P}=\left\{\text { permutations } \pi \text { contained in } \pi_{w_{i}} \text { for some } i\right\}
$$

Prouhet-Thue-Morse is uniformly recurrent $\Longrightarrow \mathcal{P}$ is WQO.

Prouhet-Thue-Morse ' $(1,1,1, \ldots)^{\prime}$

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Generates the sequence 011010011001011010010110 ...

Prouhet-Thue-Morse ' $(1,1,1, \ldots)^{\prime} \mid$ Sequence ' $(2,1,1,1, \ldots)^{\prime}$

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Generates the sequence 011010011001011010010110 ...
$v_{1}=01$
$v_{2}=01011010$
$v_{3}=0101101010100101$

Prouhet-Thue-Morse ' $(1,1,1, \ldots)^{\prime} \mid$ Sequence ' $(2,1,1,1, \ldots)^{\prime}$

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Generates the sequence 011010011001011010010110 ...

$$
\begin{aligned}
v_{1} & =01 \\
v_{2} & =01011010 \\
v_{3} & =0101101010100101 \\
& \vdots \\
v_{2} & =v_{1} v_{1} \overline{v_{1}} v_{1} \\
v_{n} & =v_{n-1} \overline{v_{n-1}} \quad(n>2)
\end{aligned}
$$

Prouhet-Thue-Morse ' $(1,1,1, \ldots)^{\prime} \mid$ Sequence ' $(2,1,1,1, \ldots)^{\prime}$

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Generates the sequence $011010011001011010010110 \ldots$

$$
\begin{aligned}
v_{1} & =01 \\
v_{2} & =01011010 \\
v_{3} & =0101101010100101 \\
& \vdots \\
v_{2} & =v_{1} v_{1} \overline{v_{1}} v_{1} \\
v_{n} & =v_{n-1} \overline{v_{n-1}} \quad(n>2)
\end{aligned}
$$

Generates the sequence 010110101010010110100101...

Prouhet-Thue-Morse ' $(1,1,1, \ldots)^{\prime} \mid$ Sequence ' $(2,1,1,1, \ldots)$ '

$$
\begin{aligned}
w_{1} & =01 \\
w_{2} & =0110 \\
w_{3} & =01101001 \\
& \vdots \\
w_{n} & =w_{n-1} \overline{w_{n-1}}
\end{aligned}
$$

Generates the sequence 011010011001011010010110 ...

$$
\begin{aligned}
v_{1} & =01 \\
v_{2} & =01011010 \\
v_{3} & =0101101010100101 \\
& \vdots \\
v_{2} & =v_{1} v_{1} \overline{v_{1}} v_{1} \\
v_{n} & =v_{n-1} \overline{v_{n-1}} \quad(n>2)
\end{aligned}
$$

Generates the sequence 010110101010010110100101...

$$
\begin{aligned}
f_{\mathcal{P}}(z)= & 1+z+2 z^{2}+6 z^{3}+22 z^{4} \\
& +80 z^{5}+276 z^{6}+948 z^{7} \\
& +3276 z^{8}+\cdots
\end{aligned}
$$

Sequence ' $(2,1,1,1, \ldots$)'
$010110101010010110100101 \ldots$

$$
\begin{aligned}
f_{\mathfrak{Q}}(z)= & 1+z+2 z^{2}+6 z^{3}+22 z^{4} \\
& +80 z^{5}+276 z^{6}+948 z^{7} \\
& +3264 z^{8}+\cdots
\end{aligned}
$$

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

- Pin sequences: Turn a binary sequence into a permutation class

$$
01101001 \cdots \rightarrow \text { Sub }\left(\begin{array}{lll}
& \ddots & . \cdot \\
\ddots \because \ddots & \\
& & \ddots
\end{array}\right)
$$

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

- Pin sequences: Turn a binary sequence into a permutation class

$$
01101001 \cdots \rightarrow \operatorname{Sub}\left(\begin{array}{lll}
& \ddots & \cdots \\
\ddots & \cdot & \\
& & \ddots
\end{array}\right)
$$

- The binary sequences are uniformly recurrent

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

- Pin sequences: Turn a binary sequence into a permutation class

$$
01101001 \cdots \rightarrow \text { Sub }\left(\begin{array}{ll}
& \ldots \\
\because \because \ddots & \\
& \ddots
\end{array}\right)
$$

- The binary sequences are uniformly recurrent
\Longrightarrow permutation classes are WQO

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

- Pin sequences: Turn a binary sequence into a permutation class

$$
01101001 \cdots \rightarrow \text { Sub }\left(\begin{array}{ll}
& \ldots \\
\because \because \ddots & \\
& \ddots
\end{array}\right)
$$

- The binary sequences are uniformly recurrent
\Longrightarrow permutation classes are WQO
- The binary sequences have different complexity functions

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

- Maurice Pouzet (PhD thesis, 1978): Turn a sequence of integers $\left(s_{i}\right)$ into a binary sequence.

$$
(1,1, \ldots) \rightarrow 01101001 \cdots
$$

- Pin sequences: Turn a binary sequence into a permutation class

$$
01101001 \cdots \rightarrow \text { Sub }\left(\begin{array}{ll}
& \ldots \\
\because \because \ddots & \\
& \ddots
\end{array}\right)
$$

- The binary sequences are uniformly recurrent
\Longrightarrow permutation classes are WQO
- The binary sequences have different complexity functions
\Longrightarrow permutation classes have different enumerations

Theorem

There are uncountably many WQO permutation classes with distinct enumerations.

Corollary

There exist WQO permutation classes that do not have algebraic (or even D-finite) generating functions.

Concluding remarks

About these classes:

- Are the growth rates distinct?

Concluding remarks

About these classes:

- Are the growth rates distinct?

Growth rate <4 conjecture:

- Not true if we replace 'finitely based' with 'WQO'.

Concluding remarks

About these classes:

- Are the growth rates distinct?

Growth rate <4 conjecture:

- Not true if we replace 'finitely based' with 'WQO'.

In search of 'tame' enumeration:

- Is labelled WQO enough to guarantee algebraic g.f.s?
- (Note: $\mathrm{LWQO} \Longrightarrow \mathrm{WQO}+$ finitely based.)

Merci!

