Spherical Dyck paths

TULANE UNIVERSITY
SCHOOL of SCIENCE
\&ٌ ENGINEERING

Mahir B. Can^{\dagger}, Néstor F. Díaz Morera ${ }^{\ddagger}$

${ }^{\dagger}$ mahirbilencan@gmail.com, \ddagger ndiazmorera@tulane.edu

Abstract

We study the partition Schubert varieties that are spherical ones via Dyck paths. Specifically, among the Schubert varieties whose associated permutation are 312-avoiding, we determine which ones are spherical varieties by this combinatorial object. We call these lattice paths spherical Dyck paths, and we find a recursive formula to count them. On the other hand, a spherical \mathbf{G}-variety \mathbf{Y} is nearly toric variety if the general codimension of torus in \mathbf{Y} is one. We identify the nearly toric partition Schubert varieties and all singular nearly toric Schubert varieties. Moreover, at computing their cardinalities, the Fibonacci numbers pop up surprisingly (see [2] for more details).

Algebraic-Geometric Scene

Notation. The algebraic groups and representations are defined over \mathbb{C}.
G : connected reductive group
\mathbf{T} : maximal torus in \mathbf{B}
B : Borel subgroup of G \qquad W : Weyl group of (G,T)

S: Coxeter generators of $(\mathbf{G}, \mathbf{B}, \mathbf{T})$
$\mathbf{P}_{\mathbf{I}}$: parabolic subgroup generated by $\mathbf{I} \subseteq S$ and \mathbf{B}
$\mathbf{L}_{\mathbf{I}}:$ Levi subgroup of $\mathbf{P}_{\mathbf{I}}$ containing $\mathbf{T} w_{0}(\mathbf{I})$: longest element of $\mathbf{P}_{\mathbf{I}}$
Definition 1. An irreducible normal G-variety Y is spherical if a Borel subgroup B of \mathbf{G} has an open orbit in \mathbf{Y}.
Definition 2. Let \mathbf{Y} be a spherical variety. The \mathbf{T}-complexity of \mathbf{Y}, denoted by $c_{\mathbf{T}}(\mathbf{Y})$, is the codimension of the maximal torus \mathbf{T} in \mathbf{Y}. If the T -complexity of T is 1 , we call Y a nearly toric variety.
Example 1. If \mathbf{G} is the general linear group GL_{n}, the Borel subgroup and maximal torus are the upper triangular matrices and the diagonal matrices respectively. By the Bruhat-Chevalley decomposition, we obtain the full flag variety

$$
\mathrm{GL}_{n} / \mathbf{B}=\bigsqcup_{w \in \mathbf{W}_{n}} \mathbf{B} w \mathbf{B} / \mathbf{B}
$$

where \mathbf{W}_{n} is the symmetric group. In particular, the B-orbit $\mathbf{B} w_{0} \mathbf{B} / \mathbf{B}$ is open in $\mathrm{GL}_{n} / \mathbf{B}$. Hence, $\mathrm{GL}_{n} / \mathbf{B}$ is a spherical variety.
Definition 3. Let w be in \mathbf{W}_{n}. The Schubert variety associated with w is the B-orbit (Zariski) closure $X_{w \mathbf{B}}:=\overline{\mathbf{B} w \mathbf{B} / \mathbf{B}}$ in $\mathrm{GL}_{n} / \mathbf{B}$. Moreover, $X_{w} \mathbf{B}$ is said to be a partition Schubert variety if w is a 312-avoiding permutation. Let \mathbf{W}_{n}^{312} denote the set of all 312avoiding permutations.

Definition 4. Let \mathbf{B}_{L} be Borel subgroup of \mathbf{L} containing T. The Schubert variety X_{w} B is spherical if $\mathbf{B}_{\mathbf{L}}$ has only finitely many orbits in X_{w} B.

X-ray: Combinatorics

Definition 5. A Dyck path π is an elbow if its Dyck word has the form NN...NEE...E, where the number of N's and E's are equal. A Dyck path π is an ledge if its Dyck word has the form NN...NE...ENE....EE starting with ($n-1$)- N steps followed by n - E steps, a unique N step, and ends with at east two E steps
Definition 6. Let $\pi=a_{1} a_{2} \ldots a_{r}$ be a Dyck word. We say that a Dyck path π^{\prime} is a E_{+}extension of π if $\pi^{\prime}=\mathrm{E} \pi$. A portion τ of $\pi^{(r)}$ is said to be a connected component if τ starts and ends at the r-th diagonal, and it intersects the r-th diagonal exactly twice, for $0 \leq r \leq n-1$.

(a) Ledge and elbow of $\pi^{(0)}$

(b) Elbow and ledge of $\pi^{(1)}$

Definition 7. A Dyck path π is called spherical if every connected component on the first diagonal $\pi^{(0)}$ is either an elbow or a ledge as depicted in (a), or every connected component of $\pi^{(1)}$ is an elbow, or a ledge whose E_{+} extension is the final step of a connected component of $\pi^{(0)}$ as shown in (b). Definition 8. The Bruhat-Chevalley on \mathbf{W} is the partial order defined by

$$
v \leq w \Longleftrightarrow X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \quad \ell(w):=\operatorname{dim} X_{w \mathbf{B}} .
$$

Definition 9. Let $\mathrm{J}(w):=\{s \in \mathrm{~S}: \ell(s w)<\ell(w)\}$ denote the left descent set of w. The Levi factor $\mathbf{L}_{\mathbf{I}}$ of $\mathbf{P}_{\mathbf{I}}$ is given by $\mathbf{I}=\mathrm{J}(w)$. A standard Coxeter element c in W_{I} is any product of the elements of \mathbf{I} sorted out in some rder

Example 2. Let $w=23187695410$ be in \mathbf{W}_{10}. We parse
$w \in \mathbf{W}_{10}^{312}, \quad \mathrm{~J}(w)=\left\{s_{2}, s_{4}, s_{5}, s_{6}, s_{7}\right\}, \quad w_{0}(\mathrm{~J}(w))=s_{1} s_{4} s_{5} s_{4} s_{6} s_{5} s_{4} s_{7} s_{6} s_{5} s_{4}$.

Classification

Gao-Hodges-Yong [5]. A Schubert variety $X_{w \boldsymbol{B}}$ is spherical if and only if $w_{0}(\mathrm{~J}(w)) w$ is a standard Coxeter element (Boolean).

$$
w=23187695410 \rightsquigarrow w_{0}(\mathrm{~J}(w)) w=s_{2} s_{8} s_{7}=\mathbf{c} .
$$

Gaetz [4]. A Schubert variety $X_{w \text { B }}$ is spherical if and only if w avoids the following 21 patterns

$$
\mathscr{P}:=\left\{\begin{array}{lllllll}
24531 & 25314 & 25341 & 34512 & 34521 & 35412 & 35421 \\
42531 & 45123 & 45213 & 45231 & 45312 & 52314 & 52341 \\
53124 & 53142 & 53412 & 53421 & 54123 & 54213 & 54231
\end{array}\right\}
$$

Can-Diaz [2]. Let w be in \mathbf{W}_{n}^{312}. Let π denote the Dyck path of size n corresponding to w. Then X_{w} B is a spherical Schubert variety if and only if π is spherical Dyck path.

Lee-Masuda-Park [6]. $c_{\mathbf{T}}\left(X_{w} \mathbf{B}\right)=1$ and smooth $\Longleftrightarrow w$ contains the pattern 321 exactly once and avoids $3412 \Longleftrightarrow$ there exists a reduced word of w containing $s_{i} s_{i+1} s_{i}$ as a factor and no other repetitions. Moreover, $\mathcal{C}_{\mathbf{T}}\left(X_{w \mathbf{B}}\right)=1$ and singular $\Longleftrightarrow w$ contains the pattern 3412 exactly once and avoids the pattern 321

Corollary 1 (Can-Diaz). If $c\left(X_{w \mathbf{B}}\right)=1$ and w in \mathbf{W}^{312}, then $X_{w \mathbf{B}}$ is nearly toric variety. Moreover, its cardinality is $2^{n-3}(n-2)$ for $n \geq 4$.

Can-Diaz [2]. Let X_{w} в be a singular Schubert variety of Tcomplexity 1. Then X_{w} в is nearly toric variety (There is a geometric proof in [3]). Furthermore, let b_{n} be the cardinality of this family. Then the generating series of b_{n} is given by A001871OEIS.

Bankston-Diaz. Let \mathscr{S}_{n} be the set of spherical Dyck paths.
$\left|\mathscr{S}_{n}\right|=\left\{\begin{array}{ll}1 & n=1 \\ \sum_{k=2}^{n-1}\left|\mathscr{S}_{n-k}\right| \pi_{k}^{(1)}+\pi_{n}^{(1)}+\left|\mathscr{S}_{n-1}\right| & n \geq 2^{\prime}\end{array} \quad \pi_{n}^{(1)}= \begin{cases}1 & 1 \leq n \leq 2 \\ 3 \cdot 2^{n-3}-1 & n \geq 3\end{cases}\right.$ $\pi_{n}^{(1)}$ counts the independence number of n-Mylcielski graph based on A266550-OIES.

Conjuncture. If $w=25314$, we found out that $c_{\mathbf{T}}\left(X_{w \mathbf{B}}\right)=1$ is smooth, yet $\mathcal{c}_{\mathbf{B}_{\mathbf{L}}}\left(X_{w \mathbf{B}}\right) \neq 0$. By using [7], the sequence

n	1	23	4	5	6	7	8

$r_{n} 001624842758642639 \rightsquigarrow r_{n+2}=n \cdot \mathscr{F}_{2 n}, \quad n \geq 0$ depicted in A317408-OEIS.

Sketchy Proof

Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

This construction was developed by Bandlow-Killpatric in [1]

$$
\mathbf{W}_{n}^{312} \underset{\phi}{\stackrel{\psi}{\longleftrightarrow}} \mathscr{L}_{n}^{+} ; \quad \ell(w) \longmapsto \operatorname{area}(\psi(w)):=\pi .
$$

References

[1] J. Bandlow and K. Killpatrick. "An area-to-inv bijection between Dyck path and 312-avoiding permutations". In: Electron. J. Combin. 8.1 (2001), Research Paper 40, 16.
[2] M. B. Can and N. Diaz Morera. Nearly Toric Schubert Varieties and Dyck Paths. 2022. urL: https://arxiv.org/abs/2212.01234.
[3] Mahir Bilen Can and Pinaki Saha. Applications of Homogeneous Fiber Bundle to the Schubert Varieties. 2023. arXiv: 2305.00468 [math. AG].
[4] C. Gaetz. "Spherical Schubert varieties and pattern avoidance". In: Selecta Math. (N.S.) 28.2 (2022), Paper No. 44, 9.
[5] Y. Gao, R. Hodges, and A. Yong. "Classifying Levi-spherical Schubert vari eties". In: Sém. Lothar. Combin. 86B (2022), Art. 29, 12.
6] E. Lee, M. Masuda, and S. Park. "On Schubert varieties of complexity one" In: Pacific J. Math. 315.2 (2021), pp. 419-447.
7] The Sage Developers. SageMath, the Sage Mathematics Software System (Version $x . y, z$). https ://www. sagemath org. YYYY.

