

TULANE UNIVERSITY **SCHOOL** of **SCIENCE** & ENGINEERING

Abstract

We study the *partition Schubert* varieties that are *spherical* ones via *Dyck paths*. Specifically, among the Schubert varieties whose associated permutation are 312-avoiding, we determine which ones are *spherical* varieties by this combinatorial object. We call these lattice paths *spherical Dyck paths*, and we find a recursive formula to count them. On the other hand, a spherical **G**-variety **Y** is *nearly toric variety* if the general codimension of *torus* in **Y** is one. We identify the nearly toric partition Schubert varieties and all *singular* nearly toric Schubert varieties. Moreover, at computing their cardinalities, the *Fibonacci* numbers pop up surprisingly (see [2] for more details).

Algebraic-Geometric Scene

Notation. The algebraic groups and representations are defined over \mathbb{C} .

G : connected reductive group	T : maximal torus in B
B : Borel subgroup of G	W : Weyl group of (G, T)
S : Coxeter generators of (G, B, T)	
P_I : parabolic subgroup generated by $I \subseteq S$ and B	
L_I : Levi subgroup of P_I containing $T w_0(I)$: longest element of P_I	

Definition 1. An irreducible normal **G**-variety **Y** is **spherical** if a Borel subgroup **B** of **G** has an open orbit in **Y**.

Definition 2. Let **Y** be a spherical variety. The **T**-complexity of **Y**, denoted by $c_{\mathbf{T}}(\mathbf{Y})$, is the codimension of the maximal torus **T** in **Y**. If the **T**-complexity of **T** is 1, we call **Y** a **nearly toric variety**. **Example 1.** If **G** is the general linear group GL_n, the Borel subgroup and maximal torus are the *upper triangular matrices* and the diagonal matrices respectively. By the Bruhat-Chevalley decomposition, we obtain the **full flag variety**

$$\operatorname{GL}_n / \mathbf{B} = \bigsqcup_{w \in \mathbf{W}_n} \mathbf{B} \ w \ \mathbf{B} / \mathbf{B}$$

where \mathbf{W}_n is the symmetric group. In particular, the **B**-orbit $\mathbf{B} w_0 \mathbf{B} / \mathbf{B}$ is open in $\operatorname{GL}_n / \mathbf{B}$. Hence, $\operatorname{GL}_n / \mathbf{B}$ is a spherical variety.

Definition 3. Let w be in \mathbf{W}_n . The **Schubert variety associated** with w is the **B**-orbit (Zariski) closure $X_{wB} := B w B / B$ in GL_n / B . Moreover, $X_{w \mathbf{B}}$ is said to be a **partition** Schubert variety if w is a 312-avoiding permutation. Let \mathbf{W}_n^{312} denote the set of all 312avoiding permutations.

Definition 4. Let B_L be Borel subgroup of L containing T. The Schubert variety $X_{w \mathbf{B}}$ is spherical if $\mathbf{B}_{\mathbf{L}}$ has only finitely many orbits in $X_{w \mathbf{B}}$.

Spherical Dyck paths

Mahir B. Can[†], Néstor F. Díaz Morera[‡] [†]mahirbilencan@gmail.com, [‡]ndiazmorera@tulane.edu

X-ray: Combinatorics

Definition 5. A Dyck path π is an **elbow** if its Dyck word has the form NN...NEE...E, where the number of N's and E's are equal. A Dyck path π is an **ledge** if its Dyck word has the form NN...NE...ENE....EE starting with (n-1)-N steps followed by *n*-E steps, a unique N step, and ends with at least two E steps.

Definition 6. Let $\pi = a_1 a_2 \dots a_r$ be a Dyck word. We say that a Dyck path π' is a E_+ extension of π if $\pi' = E \pi$. A portion τ of $\pi^{(r)}$ is said to be a **connected component** if τ starts and ends at the *r*-th diagonal, and it intersects the *r*-th diagonal exactly twice, for $0 \le r \le n - 1$.

Definition 7. A Dyck path π is called **spherical** if every connected component on the first diagonal $\pi^{(0)}$ is either an elbow or a ledge as depicted in (a), or every connected component of $\pi^{(1)}$ is an elbow, or a ledge whose E_+ extension is the final step of a connected component of $\pi^{(0)}$ as shown in (b). **Definition 8.** The **Bruhat–Chevalley** on **W** is the partial order defined by

 $v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}$ **Definition 9.** Let $J(w) := \{s \in S : \ell(sw) < \ell(w)\}$ denote the **left descent** set of *w*. The Levi factor L_I of P_I is given by I = J(w). A standard Coxeter element c in W_I is any product of the elements of I sorted out in some order.

Example 2. Let w = 23187695410 be in **W**₁₀. We parse $w \in \mathbf{W}_{10}^{312}$, $J(w) = \{s_2, s_4, s_5, s_6, s_7\}$, $w_0(J(w)) = s_1 s_4 s_5 s_4 s_6 s_5 s_6 s$

Classification

Gao-Hodges-Yong [5]. A Schubert variety $X_{w B}$ is spherical if and only if $w_0(J(w))w$ is a standard Coxeter element (*Boolean*).

 $w = 23187695410 \rightsquigarrow w_0(J(w))w = s_2s_8s_7 = c.$ **Gaetz** [4]. A Schubert variety X_{wB} is spherical if and only if w avoids the

following 21 patterns

24531 25314 25341 34512 34521 35412 35421 $\mathscr{P} := \langle 42531 \ 45123 \ 45213 \ 45231 \ 45312 \ 52314 \ 52341 \rangle$ 53124 53142 53412 53421 54123 54213 54231

Can-Diaz [2]. Let w be in \mathbf{W}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then $X_{w \mathbf{B}}$ is a spherical Schubert variety if and only if π is spherical Dyck path.

Lee-Masuda-Park [6]. $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of *w* containing $s_i s_{i+1} s_i$ as a factor and no other repetitions. Moreover, $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$ and singular $\iff w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Corollary 1 (Can-Diaz). If $c(X_{w B}) = 1$ and w in W^{312} , then $X_{w B}$ is nearly **toric variety**. Moreover, its cardinality is $2^{n-3}(n-2)$ for $n \ge 4$.

 $\ell(w) := \dim X_{w \mathbf{B}}.$

Can-Diaz [2]. Let X_{wB} be a singular Schubert variety of Tcomplexity 1. Then $X_{w \mathbf{B}}$ is nearly toric variety (There is a geometric proof in [3]). Furthermore, let b_n be the cardinality of this family. Then the generating series of b_n is given by A001871-OEIS.

Bankston-Diaz. Let \mathscr{S}_n be the set of spherical Dyck paths. $|\mathscr{S}_{n}| = \begin{cases} 1 & n-1 \\ \sum_{k=2}^{n-1} |\mathscr{S}_{n-k}| \pi_{k}^{(1)} + \pi_{n}^{(1)} + |\mathscr{S}_{n-1}| & n \ge 2' \end{cases}$

 $\pi_n^{(1)}$ counts the independence number of *n*-Mylcielski graph based on A266550-OIES.

Conjuncture. If w = 25314, we found out that $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$ is smooth, yet $c_{\mathbf{B}_{\mathbf{L}}}(X_{w \mathbf{B}}) \neq 0$. By using [7], the sequence $\frac{n \ | \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9}{r_n \ 0 \ 0 \ 1 \ 6 \ 24 \ 84 \ 275 \ 864 \ 2639} \rightsquigarrow r_{n+2} = n \cdot \mathscr{F}_{2n}, \quad n \ge 0$ depicted in A317408-OEIS.

Sketchy Proof

This construction was developed by **Bandlow-Killpatric** in [1]

$$\mathbf{W}_{n}^{312} \xrightarrow{\psi} \mathscr{L}_{n}^{+} ; \ell(w) \vdash \phi$$

References

- [1] J. Bandlow and K. Killpatrick. "An area-to-inv bijection between Dyck paths and 312-avoiding permutations". In: Electron. J. Combin. 8.1 (2001), Research Paper 40, 16.
- [2] M. B. Can and N. Diaz Morera. *Nearly Toric Schubert Varieties and Dyck Paths*. 2022. URL: https://arxiv.org/abs/2212.01234.
- [3] Mahir Bilen Can and Pinaki Saha. *Applications of Homogeneous Fiber Bundles* to the Schubert Varieties. 2023. arXiv: 2305.00468 [math.AG].
- [4] C. Gaetz. "Spherical Schubert varieties and pattern avoidance". In: Selecta *Math.* (*N.S.*) 28.2 (2022), Paper No. 44, 9.
- [5] Y. Gao, R. Hodges, and A. Yong. "Classifying Levi-spherical Schubert varieties". In: Sém. Lothar. Combin. 86B (2022), Art. 29, 12. [6] E. Lee, M. Masuda, and S. Park. "On Schubert varieties of complexity one". In: Pacific J. Math. 315.2 (2021), pp. 419–447.
- [7] The Sage Developers. *SageMath, the Sage Mathematics Software System* (Version x.y.z). https://www.sagemath.org. YYYY.

$$\pi_n^{(1)} = \begin{cases} 1 & 1 \le n \le 2\\ 3 \cdot 2^{n-3} - 1 & n \ge 3 \end{cases}$$

 $\longrightarrow \operatorname{area}(\psi(w)) := \pi.$