# FISHBURN TREES

### Giulio Cerbai Joint work with Anders Claesson

University of Iceland giulio@hi.is

$$\sum_{n \ge 0} \prod_{k=1}^{n} \left( 1 - (1-x)^k \right) = 1 + x + 2x^2 + 5x^3 + 15x^4 + 53x^5 + 217x^6 + \dots$$

$$\sum_{n\geq 0} \prod_{k=1}^{n} \left( 1 - (1-x)^k \right) = 1 + x + 2x^2 + 5x^3 + 15x^4 + 53x^5 + 217x^6 + \dots$$

### MILESTONE PAPERS

- (2+2)-free posets, ascent sequences and pattern avoiding permutations,
  M. Bousquet-Melou, A. Claesson, M. Dukes, S. Kitaev, 2010.
  - -Ascent sequences (and modified ascent sequences);
  - -Fishburn permutations;
  - -Unlabeled (2+2)-free posets;
  - -Stoimenow matchings.

$$\sum_{n \ge 0} \prod_{k=1}^{n} \left( 1 - (1-x)^k \right) = 1 + x + 2x^2 + 5x^3 + 15x^4 + 53x^5 + 217x^6 + \dots$$

### MILESTONE PAPERS

 (II) Ascent sequences and upper triangular matrices containing non-negative integers, M. Dukes, R. Parviainen, 2010.

-Fishburn matrices and ascent sequences.

$$\sum_{n \ge 0} \prod_{k=1}^{n} \left( 1 - (1-x)^k \right) = 1 + x + 2x^2 + 5x^3 + 15x^4 + 53x^5 + 217x^6 + \dots$$

### MILESTONE PAPERS

 (III) Composition matrices, (2+2)-free posets and their specializations, M. Dukes, V. Jelínek, M. Kubitzke, 2011.

-Fishburn matrices and (2+2)-free posets.



$$\sum_{n \ge 0} \prod_{k=1}^{n} \left( 1 - (1-x)^k \right) = 1 + x + 2x^2 + 5x^3 + 15x^4 + 53x^5 + 217x^6 + \dots$$

### ONE MORE REFERENCE

- (IV) Transport of patterns by Burge transpose, C., Claesson, PP2022.
  - -Modified ascent sequences and Fishburn permutations;
  - -Transport of patterns based on the Burge transpose.





A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;
- **3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;

**3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

 $\{x_1\} \cup \{\text{Ascent tops}\} = \{\text{Leftmost copies}\}$ 

A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;
- **3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

Cayley permutations avoiding the Cayley-mesh patterns



A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;
- **3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

### EXAMPLE

$$\mathbf{x} = \underline{1} \ 1 \ \underline{4} \ 1 \ 1 \ \underline{1} \ \underline{2} \ 2 \ \underline{5} \ 2 \ 2 \ \underline{3}$$

A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;
- **3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

## Non-example

$$x = 1 \ 2 \ 1 \ 2$$

A sequence  $x = x_1 \cdots x_n$  is a **MODIFIED** (ASCENT) SEQUENCE if:

- $x_1 = 1;$
- **2**  $\{x_1, \ldots, x_n\}$  is an interval;
- **3**  $x_i < x_{i+1}$  if and only if  $x_{i+1}$  is the leftmost copy of  $x_{i+1}$  in x.

#### ANOTHER NON-EXAMPLE: WHY?

 $x\,=\,1\,\,2\,\,1\,\,4\,\,3$ 

## FROM MODIFIED SEQUENCES TO FISHBURN TREES

- Let  $x_m$  be the leftmost copy of  $\max(x)$  in x;
- The MAX-DECOMPOSITION of  $x = x_1 \dots x_n$  is

$$x = \operatorname{pref}(x) x_m \operatorname{suff}(x)$$

## FROM MODIFIED SEQUENCES TO FISHBURN TREES

- Let  $x_m$  be the leftmost copy of  $\max(x)$  in x;
- The MAX-DECOMPOSITION of  $x = x_1 \dots x_n$  is

 $x = \operatorname{pref}(x) x_m \operatorname{suff}(x)$ 

The **rooted**, **labeled**, **binary** tree T(x) is defined by  $T(\emptyset) = \emptyset$  and:



### $x = 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2 \quad 5 \quad 2 \quad 2 \quad 3$

# T(x) =



 $\mathbf{T}(x) =$ 



T(x) =











Can you guess how to determine x from the tree T(x)?



Can you guess how to determine x from the tree T(x)? We use the in-order traversal! Let T = (L, r, R) be the rooted, labeled, binary tree with:

- Left subtree L;
- Root r with label  $\mathfrak{l}(r)$ ;
- Right subtree R

#### IN-ORDER SEQUENCE

The in-order sequence of T is defined recursively by:

$$x(\emptyset) = \emptyset$$
 and  $x(T) = x(L) \mathfrak{l}(r) x(R).$ 

"In-order traverse T and write down the label of each visited node".







### I ROOTED.

- **BINARY**: Each node has either:
  - 0 children;
  - 1 child, which is either the left or the right child;
  - 2 children, namely a left child and a right child.

### I ROOTED.

- **BINARY**: Each node has either:
  - 0 children;
  - 1 child, which is either the left or the right child;
  - 2 children, namely a left child and a right child.

IABELED:

- Each node v has a positive integer label  $\mathfrak{l}(v)$ .
- The set of labels is an interval.

### I ROOTED.

- **2 BINARY**: Each node has either:
  - 0 children;
  - 1 child, which is either the left or the right child;
  - 2 children, namely a left child and a right child.

### IABELED:

- Each node v has a positive integer label  $\mathfrak{l}(v)$ .
- The set of labels is an interval.

#### **4** DECREASING TO THE RIGHT.

**5** STRICTLY DECREASING TO THE LEFT.

### I ROOTED.

- **2 BINARY**: Each node has either:
  - 0 children;
  - 1 child, which is either the left or the right child;
  - 2 children, namely a left child and a right child.

IABELED:

- Each node v has a positive integer label  $\mathfrak{l}(v)$ .
- The set of labels is an interval.
- **4** DECREASING TO THE RIGHT.
- STRICTLY DECREASING TO THE LEFT.

• {Leftmost node}  $\cup$  {Nodes with a left child} = {Leftmost copies}.

### I ROOTED.

- **BINARY**: Each node has either:
  - 0 children;
  - 1 child, which is either the left or the right child;
  - 2 children, namely a left child and a right child.

IABELED:

- Each node v has a positive integer label  $\mathfrak{l}(v)$ .
- The set of labels is an interval.
- **DECREASING TO THE RIGHT**.
- STRICTLY DECREASING TO THE LEFT.

• {Leftmost node}  $\cup$  {Nodes with a left child} = {Leftmost copies}.

A FISHBURN TREE is a tree that satisfies all the above properties.

## MAXIMAL-RIGHT-PATH DECOMPOSITION

The **DIAGONAL** of T is the path from the root to the leftmost node.

The **DIAGONAL** of T is the path from the root to the leftmost node.

- Decompose T in maximal right paths.
- In each path, the topmost node v is either:
  - (I) on the diagonal;
  - $({\scriptstyle\rm II})~$  or, the left child of a node that is not on the diagonal.
- Number each maximal right path by the label of:
  - $\left( I\right) \,$  its top node, if the top node is on the diagonal;
  - (II) the father of its top node, otherwise.












#### Theorem

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in  $\{1, 2, \ldots, k\}$ .

#### Theorem

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in  $\{1, 2, \dots, k\}$ .

#### Each node v of T gets two labels:

The node label  $\mathfrak{l}(v)$ ; The path label  $\mathfrak{b}(v)$ .

#### Theorem

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in  $\{1, 2, \dots, k\}$ .

#### Each node v of T gets two labels:

The node label  $\mathfrak{l}(v)$ ; The path label  $\mathfrak{b}(v)$ .

#### Theorem

$$\mathfrak{l}(v) \leq \mathfrak{b}(u).$$

**Proof.** A Fishburn tree is decreasing.

#### FISHBURN MATRICES

- Lower triangular;
- Non-negative integer entries;
- Every row and column contains at least one non-zero entry.
- The size of a Fishburn matrix is the sum of its entries.

#### FISHBURN MATRICES

- Lower triangular;
- Non-negative integer entries;
- Every row and column contains at least one non-zero entry.
- The size of a Fishburn matrix is the sum of its entries.

#### FISHBURN MATRICES OF SIZE 3

$$\begin{bmatrix} 3 \end{bmatrix}, \begin{bmatrix} 2 \\ \cdot \end{bmatrix}, \begin{bmatrix} 1 \\ \cdot \end{bmatrix}, \begin{bmatrix} 1 \\ \cdot \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \cdot \end{bmatrix}, \begin{bmatrix} 1 \\ \cdot \end{bmatrix}$$









































1

1 1

1

•

1 1 .

· · 1

· 1 · 1

13/17







-Root: bottom-right node



-Root: bottom-right node

-Left children: go up the diagonal


-Root: bottom-right node

-Left children: go up the diagonal



-Root: bottom-right node

-Left children: go up the diagonal



-Root: bottom-right node

-Left children: go up the diagonal



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row
- -Left children: bounce off the diagonal



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row
- -Left children: bounce off the diagonal



- -Root: bottom-right node
- -Left children: go up the diagonal
- -Right children: go back on each row
- -Left children: bounce off the diagonal

Rotate the matrix by  $90^{\circ}$  to obtain the Fishburn tree!

Fishburn Trees



 $\begin{array}{l} \rightarrow \text{ Max-Decomposition} \\ \leftarrow \text{ In-order sequence} \end{array}$ 





#### FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.
- On Fishburn matrices, the flip corresponds to the reflection of a matrix in its antidiagonal.
- The sum of two Fishburn matrices is a Fishburn matrix.

#### FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.
- On Fishburn matrices, the flip corresponds to the reflection of a matrix in its antidiagonal.
- The sum of two Fishburn matrices is a Fishburn matrix.
- How do flip and sum act on the corresponding ascent sequences?
- One of the sum act on Fishburn trees?
- **③** Is there a natural involution on the set of Fishburn trees?

| Fishburn trees                           | Modified seq.                      | Fishburn mat.     | (2+2)-free posets             |
|------------------------------------------|------------------------------------|-------------------|-------------------------------|
| Strictly decreasing                      | Primitive                          | Binary            | Primitive                     |
| Comb-shaped                              | Self-modified                      | Positive diagonal | $\exists$ Chain of max length |
| (*)                                      | $\hat{\mathcal{A}}(212,312)$       | NW-free           | N-free (Series-parallel)      |
| (†)                                      | $\hat{\mathcal{A}}(231)$           | SW-free           | (3+1)-free (Semiorders)       |
| By intersection of<br>the above two rows | $\hat{\mathcal{A}}(212, 312, 231)$ | (NW,SW)-free      | N- and (3+1)-free             |

$$\begin{array}{l} (\star) \not \supseteq u, v: \mathfrak{l}(u) < \mathfrak{l}(v) \leq \mathfrak{b}(u) < \mathfrak{b}(v) \\ (\dagger) \not \supseteq u, v: \mathfrak{b}(u) < \mathfrak{b}(v), \ \mathfrak{l}(u) > \mathfrak{l}(v) \end{array}$$

| Fishburn trees                            | Modified seq.   | Fishburn mat.            | (2+2)-free posets                  |
|-------------------------------------------|-----------------|--------------------------|------------------------------------|
| # nodes                                   | Length          | Sum of entries           | #  elements                        |
| Biggest node label                        | Maximum value   | $\# \mathrm{~rows/cols}$ | # levels                           |
| $ \{u:\mathfrak{l}(u)=j\} $               | # copies of $j$ | $\sum_{i} a_{i,j}$       | $ L_j $                            |
| $ \{u:\mathfrak{b}(u)=\mathfrak{l}(u)\} $ | # weak ltr-max  | Trace                    | $\sum_{i}  L_i \cap D_{i+1} $      |
| $ \{u:\mathfrak{l}(u)=1\} $               | # copies of 1   | $\sum_{i} a_{i,1}$       | #  minimal elements                |
| $ \mathrm{rpath}(r) $                     | # weak rtl-max  | $\sum_{j} a_{k,j}$       | # maximal elements                 |
| $\mathfrak{l}(v_n)$                       | $x_n$           | index                    | Minimal level of a maximal element |

| Fishburn trees                            | Modified seq.   | Fishburn mat.            | (2+2)-free posets                  |
|-------------------------------------------|-----------------|--------------------------|------------------------------------|
| #  nodes                                  | Length          | Sum of entries           | # elements                         |
| Biggest node label                        | Maximum value   | $\# \mathrm{~rows/cols}$ | # levels                           |
| $ \{u:\mathfrak{l}(u)=j\} $               | # copies of $j$ | $\sum_{i} a_{i,j}$       | $ L_j $                            |
| $ \{u:\mathfrak{b}(u)=\mathfrak{l}(u)\} $ | # weak ltr-max  | Trace                    | $\sum_{i}  L_i \cap D_{i+1} $      |
| $ \{u:\mathfrak{l}(u)=1\} $               | # copies of 1   | $\sum_{i} a_{i,1}$       | #  minimal elements                |
| $ \mathrm{rpath}(r) $                     | # weak rtl-max  | $\sum_{j} a_{k,j}$       | # maximal elements                 |
| $\mathfrak{l}(v_n)$                       | $x_n$           | index                    | Minimal level of a maximal element |

Thanks!