
Fishburn trees

Giulio Cerbai
Joint work with Anders Claesson

University of Iceland

giulio@hi.is

1/ 17

The Fishburn numbers

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1+ x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + . . .

2/ 17

The Fishburn numbers

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1+ x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + . . .

Milestone papers

(i) (2+2)-free posets, ascent sequences and pattern avoiding

permutations,
M. Bousquet-Melou, A. Claesson, M. Dukes, S. Kitaev, 2010.

-Ascent sequences (and modi�ed ascent sequences);

-Fishburn permutations;

-Unlabeled (2+2)-free posets;

-Stoimenow matchings.

2/ 17

The Fishburn numbers

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1+ x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + . . .

Milestone papers

(ii) Ascent sequences and upper triangular matrices containing

non-negative integers,
M. Dukes, R. Parviainen, 2010.

-Fishburn matrices and ascent sequences.

2/ 17

The Fishburn numbers

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1+ x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + . . .

Milestone papers

(iii) Composition matrices, (2+2)-free posets and their specializations,
M. Dukes, V. Jelínek, M. Kubitzke, 2011.

-Fishburn matrices and (2+2)-free posets.

2/ 17

The Fishburn numbers

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1+ x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + . . .

One more reference

(iv) Transport of patterns by Burge transpose,
C., Claesson, PP2022.

-Modi�ed ascent sequences and Fishburn permutations;

-Transport of patterns based on the Burge transpose.

2/ 17

Fishburn

Trees

Ascent

Sequences

Fishburn

Matrices

Fishburn

Permutations

(2+2)-free
Posets

BCDK

DJK

DP

BCDK
(CC)

3/ 17

Fishburn

Trees

Ascent

Sequences

Fishburn

Matrices

Fishburn

Permutations

(2+2)-free
Posets

BCDK

DJK

DP

BCDK
(CC)

3/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

4/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

{x1} ∪ {Ascent tops} = {Leftmost copies}

4/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

Cayley permutations avoiding the Cayley-mesh patterns

and

4/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

Example

x = 1 1 4 1 1 1 2 2 5 2 2 3

4/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

Non-example

x = 1 2 1 2

4/ 17

Modified Ascent Sequences

Combinatorial definition (C., Claesson, 2020)

A sequence x = x1 · · ·xn is a modified (ascent) sequence if:

1 x1 = 1;

2 {x1, . . . , xn} is an interval;

3 xi < xi+1 if and only if xi+1 is the leftmost copy of xi+1 in x.

Another non-example: why?

x = 1 2 1 4 3

4/ 17

From modified sequences to Fishburn trees

Let xm be the leftmost copy of max(x) in x;

The max-decomposition of x = x1 . . . xn is

x = pref(x)xm suff(x)

The rooted, labeled, binary tree T(x) is de�ned by T(∅) = ∅ and:

xm

T(x) =

T (pref(x)) T (suff(x))

5/ 17

From modified sequences to Fishburn trees

Let xm be the leftmost copy of max(x) in x;

The max-decomposition of x = x1 . . . xn is

x = pref(x)xm suff(x)

The rooted, labeled, binary tree T(x) is de�ned by T(∅) = ∅ and:

xm

T(x) =

T (pref(x)) T (suff(x))

5/ 17

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

Can you guess how to determine x from the tree T(x)?

We use the in-order traversal!

Let T = (L, r,R) be the rooted, labeled, binary tree with:

Left subtree L;

Root r with label l(r);

Right subtree R

In-order sequence

The in-order sequence of T is de�ned recursively by:

x(∅) = ∅ and x(T) = x(L) l(r) x(R).

�In-order traverse T and write down the label of each visited node�.

6/ 17

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

x = 1 1 4 1 1 1 2 2 5 2 2 3

T(x) =

5

4 3

1 2 2

1 1 2 2

1

1

x = 1 1 4 1 1 1 2 2 5 2 2 3

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Properties of T(x)

1 rooted.

2 binary: Each node has either:

- 0 children;

- 1 child, which is either the left or the right child;

- 2 children, namely a left child and a right child.

3 labeled:

- Each node v has a positive integer label l(v).

- The set of labels is an interval.

4 decreasing to the right.

5 strictly decreasing to the left.

6 {Leftmost node} ∪ {Nodes with a left child} = {Leftmost copies}.

A Fishburn tree is a tree that satis�es all the above properties.

7/ 17

Maximal-right-path decomposition

The diagonal of T is the path from the root to the leftmost node.

Decompose T in maximal right paths.

In each path, the topmost node v is either:

(i) on the diagonal;

(ii) or, the left child of a node that is not on the diagonal.

Number each maximal right path by the label of:

(i) its top node, if the top node is on the diagonal;

(ii) the father of its top node, otherwise.

8/ 17

Maximal-right-path decomposition

The diagonal of T is the path from the root to the leftmost node.

Decompose T in maximal right paths.

In each path, the topmost node v is either:

(i) on the diagonal;

(ii) or, the left child of a node that is not on the diagonal.

Number each maximal right path by the label of:

(i) its top node, if the top node is on the diagonal;

(ii) the father of its top node, otherwise.

8/ 17

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

5

4 3

1 2 2

1 1 2 2

1

1

diag(T)

1

4 5

2

3

Maximal-right-path decomposition

Theorem

Let k be the maximal value of a label in T .

There are k maximal-right-paths.

Each one corresponds to a unique number in {1, 2, . . . , k}.

Each node v of T gets two labels:

The node label l(v); The path label b(v).

Theorem

l(v) ≤ b(u).

Proof. A Fishburn tree is decreasing.

9/ 17

Maximal-right-path decomposition

Theorem

Let k be the maximal value of a label in T .

There are k maximal-right-paths.

Each one corresponds to a unique number in {1, 2, . . . , k}.

Each node v of T gets two labels:

The node label l(v); The path label b(v).

Theorem

l(v) ≤ b(u).

Proof. A Fishburn tree is decreasing.

9/ 17

Maximal-right-path decomposition

Theorem

Let k be the maximal value of a label in T .

There are k maximal-right-paths.

Each one corresponds to a unique number in {1, 2, . . . , k}.

Each node v of T gets two labels:

The node label l(v); The path label b(v).

Theorem

l(v) ≤ b(u).

Proof. A Fishburn tree is decreasing.

9/ 17

Fishburn matrices

Lower triangular;

Non-negative integer entries;

Every row and column contains at least one non-zero entry.

- The size of a Fishburn matrix is the sum of its entries.

Fishburn matrices of size 3

[3] ,
[
2
· 1

]
,
[
1
· 2

]
,
[
1
1 1

]
,

[
1
· 1
· · 1

]

10/ 17

Fishburn matrices

Lower triangular;

Non-negative integer entries;

Every row and column contains at least one non-zero entry.

- The size of a Fishburn matrix is the sum of its entries.

Fishburn matrices of size 3

[3] ,
[
2
· 1

]
,
[
1
· 2

]
,
[
1
1 1

]
,

[
1
· 1
· · 1

]

10/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 


11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

1

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

12

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

12

1

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

12

11

11/ 17

The Fishburn matrix A = (aij) associated with T is:

aij = |{nodes with label j contained in the ith path of T}|
= |{v : l(v) = i, b(v) = j}|.

5

4 3

1 2 2

1 1 2 2

1

1

1

4 5

2

3 



2

3

2

12

11

·
· ·
· ·
· · ·

11/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1





12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 1

1

1

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 2

1

1

1

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 3

2

2

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 4

4

2

2

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 5

5

3

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 1

1

1

4

4

2

2
5

5

3

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1



 1

1

1

4

4

2

2
5

5

3

5

4

1

3

2

21

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1




5

4

1

3

2

21

2

1

1

1
3

2

2

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1




5

4

1

3

2

21

2

1

1

1
3

2

2

2

2

12/ 17

From Fishburn matrices to Fishburn trees

2

3 ·
· 2 ·
· 2 · 1

· · 1 · 1




5

4

1

3

2

21

2

1

1

1
3

2

2

2

21

1

1
12/ 17

�Embedding� of trees on binary matrices

1

1 1

1 1 ·

1 · · 1

· · 1 · 1

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 1

1 1 ·

1 · · 1

· · 1 · 1

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

�Embedding� of trees on binary matrices

1

1 2

1 2 ·

1 · · 4

· · 3 · 5

-Root: bottom-right node

-Left children: go up the diagonal

-Right children: go back on each row

-Left children: bounce o� the diagonal

Rotate the matrix by 90◦ to obtain the Fishburn tree!

13/ 17

Fishburn

Trees

Modi�ed

Ascent

Sequences

→ Max-Decomposition
← In-order sequence

Fishburn

Matrices

Path label ↔ Row index
Node label ↔ Column index

(2+2)-Free
Posets

Path label ↔ Down-sets
Node label ↔ Levels

14/ 17

Fishburn

Trees

Modi�ed

Ascent

Sequences

→ Max-Decomposition
← In-order sequence

Fishburn

Matrices

Path label ↔ Row index
Node label ↔ Column index

(2+2)-Free
Posets

Path label ↔ Down-sets
Node label ↔ Levels

14/ 17

Fishburn

Trees

Modi�ed

Ascent

Sequences

→ Max-Decomposition
← In-order sequence

Fishburn

Matrices

Path label ↔ Row index
Node label ↔ Column index

(2+2)-Free
Posets

Path label ↔ Down-sets
Node label ↔ Levels

14/ 17

Fishburn

Trees

Modi�ed

Ascent

Sequences

→ Max-Decomposition
← In-order sequence

Fishburn

Matrices

Path label ↔ Row index
Node label ↔ Column index

(2+2)-Free
Posets

Path label ↔ Down-sets
Node label ↔ Levels

14/ 17

Applications: flip and sum

flip and sum

- Duality (flip) acts as an involution on Fishburn posets.

- On Fishburn matrices, the flip corresponds to the re�ection of a
matrix in its antidiagonal.

- The sum of two Fishburn matrices is a Fishburn matrix.

1 How do flip and sum act on the corresponding ascent sequences?

2 How do flip and sum act on Fishburn trees?

3 Is there a natural involution on the set of Fishburn trees?

15/ 17

Applications: flip and sum

flip and sum

- Duality (flip) acts as an involution on Fishburn posets.

- On Fishburn matrices, the flip corresponds to the re�ection of a
matrix in its antidiagonal.

- The sum of two Fishburn matrices is a Fishburn matrix.

1 How do flip and sum act on the corresponding ascent sequences?

2 How do flip and sum act on Fishburn trees?

3 Is there a natural involution on the set of Fishburn trees?

15/ 17

Applications: Subfamilies

Fishburn trees Modi�ed seq. Fishburn mat. (2+2)-free posets

Strictly decreasing Primitive Binary Primitive

Comb-shaped Self-modi�ed Positive diagonal ∃ Chain of max length

(⋆) Â(212, 312) NW-free N -free (Series-parallel)

(†) Â(231) SW-free (3+1)-free (Semiorders)

By intersection of
the above two rows Â(212, 312, 231) (NW,SW)-free N - and (3+1)-free

(⋆) ̸ ∃ u, v : l(u) < l(v) ≤ b(u) < b(v)

(†) ̸ ∃ u, v : b(u) < b(v), l(u) > l(v)

16/ 17

Applications: Statistics

Fishburn trees Modi�ed seq. Fishburn mat. (2+2)-free posets

nodes Length Sum of entries # elements

Biggest node label Maximum value # rows/cols # levels

|{u : l(u) = j}| # copies of j
∑

i ai,j |Lj |

|{u : b(u) = l(u)}| # weak ltr-max Trace
∑

i |Li ∩Di+1|

|{u : l(u) = 1}| # copies of 1
∑

i ai,1 # minimal elements

|rpath(r)| # weak rtl-max
∑

j ak,j # maximal elements

l(vn) xn index
Minimal level of a
maximal element

Thanks!

17/ 17

Applications: Statistics

Fishburn trees Modi�ed seq. Fishburn mat. (2+2)-free posets

nodes Length Sum of entries # elements

Biggest node label Maximum value # rows/cols # levels

|{u : l(u) = j}| # copies of j
∑

i ai,j |Lj |

|{u : b(u) = l(u)}| # weak ltr-max Trace
∑

i |Li ∩Di+1|

|{u : l(u) = 1}| # copies of 1
∑

i ai,1 # minimal elements

|rpath(r)| # weak rtl-max
∑

j ak,j # maximal elements

l(vn) xn index
Minimal level of a
maximal element

Thanks!

17/ 17

