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THE FISHBURN NUMBERS

n
H( 1—x)k> — 142+ 222 + 52% + 152 + 532° + 21725 + . .
n>0 k=1

MILESTONE PAPERS

(1) (2+2)-free posets, ascent sequences and pattern avoiding
permutations,
M. Bousquet-Melou, A. Claesson, M. Dukes, S. Kitaev, 2010.

-Ascent sequences (and modified ascent sequences);
-Fishburn permutations;
-Unlabeled (2-+42)-free posets;

-Stoimenow matchings.



THE FISHBURN NUMBERS

n
H( 1—x)k> — 142+ 222 + 52% + 152 + 532° + 21725 + . .
n>0 k=1

MILESTONE PAPERS

(11) Ascent sequences and upper triangular matrices containing
non-negative integers,
M. Dukes, R. Parviainen, 2010.

-Fishburn matrices and ascent sequences.



THE FISHBURN NUMBERS

n
I1 (1—(1—3:)k> =1+ + 22 + 503 + 150% + 532° + 21725 + . .

MILESTONE PAPERS

(111) Composition matrices, (2+2)-free posets and their specializations,
M. Dukes, V. Jelinek, M. Kubitzke, 2011.

-Fishburn matrices and (2+42)-free posets.



THE FISHBURN NUMBERS

n
H( 1—x)k> — 142+ 222 + 52% + 152 + 532° + 21725 + . .
n>0 k=1

ONE MORE REFERENCE

(1v) Transport of patterns by Burge transpose,
C., Claesson, PP2022.

-Modified ascent sequences and Fishburn permutations;

-Transport of patterns based on the Burge transpose.
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MODIFIED ASCENT SEQUENCES

COMBINATORIAL DEFINITION (C., CLAESSON, 2020)

A sequence z = x1 - - -z, is a MODIFIED (ASCENT) SEQUENCE if:
Q z1 =1

Q@ {z1,...,x,} is an interval;

@ z; < x;41 if and only if x;11 is the leftmost copy of x;41 in z.
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MODIFIED ASCENT SEQUENCES

COMBINATORIAL DEFINITION (C., CLAESSON, 2020)

A sequence z = x1 - - -z, is a MODIFIED (ASCENT) SEQUENCE if:
Q z1 =1
Q@ {z1,...,x,} is an interval;

@ z; < x;41 if and only if x;11 is the leftmost copy of x;41 in z.

Cayley permutations avoiding the Cayley-mesh patterns
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COMBINATORIAL DEFINITION (C., CLAESSON, 2020)

A sequence z = x1 - - -z, is a MODIFIED (ASCENT) SEQUENCE if:
Q z1 =1

Q@ {z1,...,x,} is an interval;
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MODIFIED ASCENT SEQUENCES

COMBINATORIAL DEFINITION (C., CLAESSON, 2020)

A sequence z = x1 - - -z, is a MODIFIED (ASCENT) SEQUENCE if:
Q z1 =1
Q@ {z1,...,x,} is an interval;

@ z; < x;41 if and only if x;11 is the leftmost copy of x;41 in z.

ANOTHER NON-EXAMPLE: WHY?

x=12143




FROM MODIFIED SEQUENCES TO FISHBURN TREES

o Let x,, be the leftmost copy of max(z) in z;

o The MAX-DECOMPOSITION of £ = 21 ...2, 1S

x = pref(z) x,, suff (z) ‘




FROM MODIFIED SEQUENCES TO FISHBURN TREES

o Let x,, be the leftmost copy of max(z) in z;

o The MAX-DECOMPOSITION of £ = 21 ...2, 1S

x = pref(z) x,, suff (z) ‘

The rooted, labeled, binary tree T(z) is defined by T(0)) = 0 and:
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Can you guess how to determine z from the tree T(z)?

We use the in-order traversal!



Let T'= (L, 7, R) be the rooted, labeled, binary tree with:

@ Left subtree L;
e Root r with label [(7);
o Right subtree R

IN-ORDER SEQUENCE

The in-order sequence of T is defined recursively by:

z(0)=0 and z(T) = z(L) I(r) z(R).

“In-order traverse T and write down the label of each visited node”.
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PROPERTIES OF T(z)
© ROOTED.
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© BINARY: Each node has either:
- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

7/

17



PROPERTIES OF T(z)
© ROOTED.

© BINARY: Each node has either:
- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

© LABELED:
- Each node v has a positive integer label [(v).

- The set of labels is an interval.

7/

17



PROPERTIES OF T(z)
© ROOTED.

© BINARY: Each node has either:
- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

© LABELED:
- Each node v has a positive integer label [(v).

- The set of labels is an interval.

O DECREASING TO THE RIGHT.
© STRICTLY DECREASING TO THE LEFT.

7/ 17



PROPERTIES OF T(z)
© ROOTED.

© BINARY: Each node has either:
- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

© LABELED:
- Each node v has a positive integer label [(v).

- The set of labels is an interval.

O DECREASING TO THE RIGHT.
© STRICTLY DECREASING TO THE LEFT.

@ {Leftmost node} U{Nodes with a left child} = {Leftmost copies}.

(/

17



PROPERTIES OF T(z)
© ROOTED.

© BINARY: Each node has either:
- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

© LABELED:
- Each node v has a positive integer label [(v).

- The set of labels is an interval.

O DECREASING TO THE RIGHT.
© STRICTLY DECREASING TO THE LEFT.

@ {Leftmost node} U{Nodes with a left child} = {Leftmost copies}.

A FISHBURN TREE is a tree that satisfies all the above properties.
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MAXIMAL-RIGHT-PATH DECOMPOSITION

The DIAGONAL of T is the path from the root to the leftmost node.



MAXIMAL-RIGHT-PATH DECOMPOSITION

The DIAGONAL of T is the path from the root to the leftmost node.

@ Decompose 7' in maximal right paths.

@ In each path, the topmost node v is either:
(1) on the diagonal;
(11) or, the left child of a node that is not on the diagonal.

o Number each maximal right path by the label of:

(1) its top node, if the top node is on the diagonal;
(11) the father of its top node, otherwise.
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MAXIMAL-RIGHT-PATH DECOMPOSITION

Let k be the maximal value of a label in 7'
@ There are k maximal-right-paths.

e Each one corresponds to a unique number in {1,2,...,k}.
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The node label [(v); The path label b(v).




MAXIMAL-RIGHT-PATH DECOMPOSITION

Let k be the maximal value of a label in 7'
@ There are k maximal-right-paths.

e Each one corresponds to a unique number in {1,2,...,k}.

EACH NODE v OF T' GETS TWO LABELS:

The node label [(v); The path label b(v).

[(v) < b(u).

Proof. A Fishburn tree is decreasing.




FISHBURN MATRICES

e Lower triangular;

o Non-negative integer entries;

e Every row and column contains at least one non-zero entry.

- The size of a Fishburn matrix is the sum of its entries.
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FISHBURN MATRICES

e Lower triangular;

o Non-negative integer entries;
e Every row and column contains at least one non-zero entry.

- The size of a Fishburn matrix is the sum of its entries.

FISHBURN MATRICES OF SIZE 3

1

NN PN




The Fishburn matrix A = (a;;) associated with T is:

a;j = |{nodes with label j contained in the ith path of T'}|
= {v: U(v) =4,b(v) = j}|.
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“EMBEDDING” OF TREES ON BINARY MATRICES

-Root: bottom-right node
-Left children: go up the diagonal
-Right children: go back on each row

-Left children: bounce off the diagonal

Rotate the matrix by 90° to obtain the Fishburn tree!
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bochticee! — Max-Decomposition
Ascent
< In-order sequence
Sequences
Fishburn Fishburn Path label <+ Row index
Trees Matrices Node label < Column index
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Modified
Ascent
Sequences

Fishburn
Trees

Fishburn
Matrices

(2+2)-Free
Posets

— Max-Decomposition
< In-order sequence

Path label <+ Row index
Node label ++ Column index

Path label <+ Down-sets
Node label + Levels

14/ 1

7



APPLICATIONS: FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.

- On Fishburn matrices, the £1ip corresponds to the reflection of a
matrix in its antidiagonal.

- The sum of two Fishburn matrices is a Fishburn matrix.




APPLICATIONS: FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.

- On Fishburn matrices, the £1ip corresponds to the reflection of a
matrix in its antidiagonal.

- The sum of two Fishburn matrices is a Fishburn matrix.

@ How do flip and sum act on the corresponding ascent sequences?
© How do flip and sum act on Fishburn trees?

@ Is there a natural involution on the set of Fishburn trees?



APPLICATIONS: SUBFAMILIES

Fishburn trees Modified seq. Fishburn mat. (2-+2)-free posets
Strictly decreasing Primitive Binary Primitive

Comb-shaped Self-modified Positive diagonal 3 Chain of max length
(%) A(212,312) NW-free N-free (Series-parallel)
(1) A(231) SW-free (3+1)-free (Semiorders)

By intersection of i
e above two rows  A(212,312,231)  (NW,SW)-free  N- and (3+1)-free

(*) Au,v:l(u) <l
(1) Au,v:b(u) <



APPLICATIONS: STATISTICS

Fishburn trees Modified seq.

Fishburn mat.

(2+2)-free posets

# nodes Length

Biggest node label Maximum value

u:lw) =7} # copies of j
{w:b(u) =I(u)}| # weak ltr-max
[{u:l(u) =1} # copies of 1
[rpath(r)| # weak rtl-max
((vn) n

Sum of entries
# rows/cols
22 Qi

Trace

22 G

Zj Ak,j

index

# elements

# levels

|Lj]

> |Li N Dy

# minimal elements

# maximal elements

Minimal level of a
maximal element




APPLICATIONS: STATISTICS

Fishburn trees Modified seq.

Fishburn mat.

(2+2)-free posets

# nodes Length Sum of entries # elements

Biggest node label Maximum value # rows/cols # levels

{u: l(u) = 5} # coplesof j 37 a;; L]

Hu:b(u) =1l(u)}| # weak ltr-max Trace > i |Li N Diga]

Hu: (u) =1} # copies of 1 > ain # minimal elements

[rpath(r)]| # weak rtlmax . ak; # maximal elements

[(vn) ind Minimal level of a
Un In ndex maximal element

Thanks!



