Fishburn Trees

Giulio Cerbai
Joint work with Anders Claesson

University of Iceland
giulio@hi.is

The Fishburn numbers

$$
\sum_{n \geq 0} \prod_{k=1}^{n}\left(1-(1-x)^{k}\right)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+53 x^{5}+217 x^{6}+\ldots
$$

The Fishburn numbers

$$
\sum_{n \geq 0} \prod_{k=1}^{n}\left(1-(1-x)^{k}\right)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+53 x^{5}+217 x^{6}+\ldots
$$

Milestone Papers

(1) (2+2)-free posets, ascent sequences and pattern avoiding permutations,
M. Bousquet-Melou, A. Claesson, M. Dukes, S. Kitaev, 2010.
-Ascent sequences (and modified ascent sequences);
-Fishburn permutations;
-Unlabeled (2+2)-free posets;
-Stoimenow matchings.

The Fishburn numbers

$\sum_{n \geq 0} \prod_{k=1}^{n}\left(1-(1-x)^{k}\right)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+53 x^{5}+217 x^{6}+\ldots$

Milestone Papers

(ii) Ascent sequences and upper triangular matrices containing non-negative integers,
M. Dukes, R. Parviainen, 2010.
-Fishburn matrices and ascent sequences.

The Fishburn numbers

$\sum_{n \geq 0} \prod_{k=1}^{n}\left(1-(1-x)^{k}\right)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+53 x^{5}+217 x^{6}+\ldots$

Milestone Papers

(III) Composition matrices, (2+2)-free posets and their specializations, M. Dukes, V. Jelínek, M. Kubitzke, 2011.
-Fishburn matrices and $(\mathbf{2}+\mathbf{2})$-free posets.

The Fishburn numbers

$\sum_{n \geq 0} \prod_{k=1}^{n}\left(1-(1-x)^{k}\right)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+53 x^{5}+217 x^{6}+\ldots$

ONE MORE REFERENCE

(IV) Transport of patterns by Burge transpose, C., Claesson, PP2022.
-Modified ascent sequences and Fishburn permutations;
-Transport of patterns based on the Burge transpose.

Modified Ascent Sequences

Combinatorial definition (C., Clabsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

Modified Ascent Sequences

Combinatorial definition (C., Clabsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

$$
\left\{x_{1}\right\} \cup\{\text { Ascent tops }\}=\{\text { Leftmost copies }\}
$$

Modified Ascent Sequences

Combinatorial definition (C., Cladsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

Cayley permutations avoiding the Cayley-mesh patterns

and

Modified Ascent Sequences

Combinatorial definition (C., Clabsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

ExAMPLE

$$
\mathrm{x}=\underline{1} 1 \underline{4} 111 \underline{2} 2 \underline{5} 22 \underline{3}
$$

Modified Ascent Sequences

Combinatorial definition (C., Clabsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

NON-EXAMPLE

$$
\mathrm{x}=1212
$$

Modified Ascent Sequences

Combinatorial definition (C., Clabsson, 2020)

A sequence $x=x_{1} \cdots x_{n}$ is a MODIFIED (ASCENT) SEQUENCE if:
(1) $x_{1}=1$;
(2) $\left\{x_{1}, \ldots, x_{n}\right\}$ is an interval;
(3) $x_{i}<x_{i+1}$ if and only if x_{i+1} is the leftmost copy of x_{i+1} in x.

ANOTHER NON-EXAMPLE: WHY?

$$
x=12143
$$

From modified sequences to Fishburn trees

- Let x_{m} be the leftmost copy of $\max (x)$ in x;
- The MAX-DECOMPOSITION of $x=x_{1} \ldots x_{n}$ is

$$
x=\operatorname{pref}(x) x_{m} \operatorname{suff}(x)
$$

From modified sequences to Fishburn trees

- Let x_{m} be the leftmost copy of $\max (x)$ in x;
- The MAX-DECOMPOSITION of $x=x_{1} \ldots x_{n}$ is

$$
x=\operatorname{pref}(x) x_{m} \operatorname{suff}(x)
$$

The rooted, labeled, binary tree $\mathrm{T}(x)$ is defined by $\mathrm{T}(\emptyset)=\emptyset$ and:

$$
x=\quad \begin{array}{llllllllllllll}
& 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

$\mathrm{T}(x)=$
$\mathrm{T}(x)=$

$\mathrm{T}(x)=$

$$
x=\begin{array}{llllllllllllll}
& & 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

$\mathrm{T}(x)=\quad 1$

$$
x=\begin{array}{llllllllllllll}
& 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

$$
x=\begin{array}{llllllllllllll}
& 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

$$
x=\begin{array}{llllllllllllll}
& 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

$$
x=\begin{array}{llllllllllllll}
x= & 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

Can you guess how to determine x from the tree $\mathrm{T}(x)$?

$$
x=
$$

$\begin{array}{llllllllllll}1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3\end{array}$

Can you guess how to determine x from the tree $\mathrm{T}(x)$? We use the in-order traversal!

Let $T=(L, r, R)$ be the rooted, labeled, binary tree with:

- Left subtree L;
- Root r with label $\mathfrak{l}(r)$;
- Right subtree R

IN-ORDER SEQUENCE

The in-order sequence of T is defined recursively by:

$$
x(\emptyset)=\emptyset \quad \text { and } \quad x(T)=x(L) \mathfrak{l}(r) x(R)
$$

"In-order traverse T and write down the label of each visited node".

$$
\mathrm{T}(x)=
$$

$$
x=\quad \begin{array}{llllllllllllll}
& 1 & 1 & 4 & 1 & 1 & 1 & 2 & 2 & 5 & 2 & 2 & 3
\end{array}
$$

Properties of $\mathrm{T}(x)$
(1) ROOTED.

Properties of $T(x)$

(1) ROOTED.
(2) BINARY: Each node has either:

- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.

Properties of $\mathrm{T}(x)$

© Rooted.
(2) BINARY: Each node has either:

- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.
(3) LABELED:
- Each node v has a positive integer label $\mathfrak{l}(v)$.
- The set of labels is an interval.

Properties of $\mathrm{T}(x)$

© Rooted.
(2) BINARY: Each node has either:

- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.
(3) LABELED:
- Each node v has a positive integer label $\mathfrak{l}(v)$.
- The set of labels is an interval.
(1) DECREASING TO THE RIGHT.
(6) STRICTLY DECREASING TO THE LEFT.

Properties of $\mathrm{T}(x)$

© rooted.
(2) BINARY: Each node has either:

- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.
(3) LABELED:
- Each node v has a positive integer label $\mathfrak{l}(v)$.
- The set of labels is an interval.
(1) DECREASING TO THE RIGHT.
© STRICTLY DECREASING TO THE LEFT.
((Leftmost node $\} \cup\{$ Nodes with a left child $\}=\{$ Leftmost copies $\}$.

Properties of $\mathrm{T}(x)$

© Rooted.
(2) BINARY: Each node has either:

- 0 children;
- 1 child, which is either the left or the right child;
- 2 children, namely a left child and a right child.
(3) LABELED:
- Each node v has a positive integer label $\mathfrak{l}(v)$.
- The set of labels is an interval.
(1) DECREASING TO THE RIGHT.
© STRICTLY DECREASING TO THE LEFT.
© $\{$ Leftmost node $\} \cup\{$ Nodes with a left child $\}=\{$ Leftmost copies $\}$.

A Fishburn tree is a tree that satisfies all the above properties.

MAXIMAL-RIGHT-PATH DECOMPOSITION

The diagonal of T is the path from the root to the leftmost node.

MAXIMAL-RIGHT-PATH DECOMPOSITION

The diagonal of T is the path from the root to the leftmost node.

- Decompose T in maximal right paths.
- In each path, the topmost node v is either:
(I) on the diagonal;
(ii) or, the left child of a node that is not on the diagonal.
- Number each maximal right path by the label of:
(I) its top node, if the top node is on the diagonal;
(iI) the father of its top node, otherwise.

MAXIMAL-RIGHT-PATH DECOMPOSITION

THEOREM

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in $\{1,2, \ldots, k\}$.

MAXIMAL-RIGHT-PATH DECOMPOSITION

THEOREM

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in $\{1,2, \ldots, k\}$.

EACH NODE v OF T GETS TWO LABELS:
The node label $\mathfrak{l}(v)$; \quad The path label $\mathfrak{b}(v)$.

MAXIMAL-RIGHT-PATH DECOMPOSITION

THEOREM

Let k be the maximal value of a label in T.

- There are k maximal-right-paths.
- Each one corresponds to a unique number in $\{1,2, \ldots, k\}$.

EACH NODE v OF T GETS TWO LABELS:

The node label $\mathfrak{l}(v) ; \quad$ The path label $\mathfrak{b}(v)$.

Theorem

$$
\mathfrak{l}(v) \leq \mathfrak{b}(u)
$$

Proof. A Fishburn tree is decreasing.

Fishburn matrices

- Lower triangular;
- Non-negative integer entries;
- Every row and column contains at least one non-zero entry.
- The size of a Fishburn matrix is the sum of its entries.

Fishburn matrices

- Lower triangular;
- Non-negative integer entries;
- Every row and column contains at least one non-zero entry.
- The size of a Fishburn matrix is the sum of its entries.

Fishburn matrices of size 3

$$
[3],\left[\begin{array}{ll}
2 & 1 \\
\cdot & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
\cdot & 2
\end{array}\right],\left[\begin{array}{ll}
1 & \\
1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
\cdot & 1 & \\
\cdot & \cdot & 1
\end{array}\right]
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

The Fishburn matrix $A=\left(a_{i j}\right)$ associated with T is:

$$
\begin{aligned}
a_{i j} & =\mid\{\text { nodes with label } j \text { contained in the } i \text { th path of } T\} \mid \\
& =|\{v: \mathfrak{l}(v)=i, \mathfrak{b}(v)=j\}| .
\end{aligned}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{ccccc}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & & \\
\cdot & 2 & \cdot & 1 & \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right]
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{ccccc}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & & \\
\cdot & 2 & \cdot & 1 & \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right] \quad \begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{ccccc}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & & \\
\cdot & 2 & \cdot & 1 & \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right] \quad{ }_{1}^{1}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{ccccc}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & & \\
\cdot & 2 & \cdot & 1 & \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right] \quad \begin{aligned}
& 2 \\
&
\end{aligned} \quad \begin{array}{|l}
\\
\end{array}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{lllll}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & & \\
\cdot & 2 & \cdot & 1 & \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right] \quad{ }_{2}^{4}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{lllll}
2 & & & & \\
3 & \cdot & & & \\
\cdot & 2 & \cdot & \\
\cdot & 2 & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot & 1
\end{array}\right] \quad{ }^{5}
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{llll}
\left.\begin{array}{lll}
2 & & \\
3 & \cdot & \\
\cdot & 2 & \cdot \\
\cdot & 2 & \cdot \\
\cdot & \cdot & 1
\end{array}\right] & { }^{1} & \\
& \mathbf{1}^{1} & (4)_{2}^{4} & \mathbf{5}^{3}
\end{array}\right.
$$

From Fishburn matrices to Fishburn trees

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{cccc}
2 & & & \\
3 & \cdot & & \\
\cdot & 2 & \cdot & \\
\cdot & 2 & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right]
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{cccc}
\left.\begin{array}{cccc}
2 & & & \\
3 & \cdot & & \\
\cdot & 2 & \cdot & \\
\cdot & 2 & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right]
\end{array}\right]
$$

From Fishburn matrices to Fishburn trees

$$
\left[\begin{array}{cccc}
2 & & & \\
3 & \cdot & & \\
\cdot & 2 & \cdot & \\
\cdot & 2 & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right]
$$

"Embedding" of Trees on binary matrices

1

11

11

1 . . 1
. . 1 . 1

"EMBEDDING" OF TREES ON BINARY MATRICES

(1)
(1)
(1)
(1) • (1)
(1) (1)

"EMBEDDING" OF TREES ON BINARY MATRICES

$(1$
(1) 2
(1) 2.
(1) • (4)

- 3 . 5

"EMBEDDING" OF TREES ON BINARY MATRICES

(1)

"EMBEDDING" OF TREES ON BINARY MATRICES

"EMBEDDING" OF TREES ON BINARY MATRICES

-Root: bottom-right node

"EMBEDDING" OF TREES ON BINARY MATRICES

"EMBEDDING" OF TREES ON BINARY MATRICES

-Root: bottom-right node
-Left children: go up the diagonal
-Right children: go back on each row

"EMBEDDING" OF TREES ON BINARY MATRICES

-Root: bottom-right node
-Left children: go up the diagonal
-Right children: go back on each row

"EMBEDDING" OF TREES ON BINARY MATRICES

-Root: bottom-right node
-Left children: go up the diagonal
-Right children: go back on each row

"EMBEDDING" OF TREES ON BINARY MATRICES

"EMBEDDING" OF TREES ON BINARY MATRICES

-Root: bottom-right node
-Left children: go up the diagonal
-Right children: go back on each row
-Left children: bounce off the diagonal

"EmbedDing" of Trees on binary matrices

Rotate the matrix by 90° to obtain the Fishburn tree!

Fishburn
Trees

\rightarrow Max-Decomposition
\leftarrow In-order sequence

Path label \leftrightarrow Row index Node label \leftrightarrow Column index

\rightarrow Max-Decomposition
\leftarrow In-order sequence

Path label \leftrightarrow Row index Node label \leftrightarrow Column index

ApPLICATIONS: FLIP AND SUM

FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.
- On Fishburn matrices, the flip corresponds to the reflection of a matrix in its antidiagonal.
- The sum of two Fishburn matrices is a Fishburn matrix.

ApPLICATIONS: FLIP AND SUM

FLIP AND SUM

- Duality (flip) acts as an involution on Fishburn posets.
- On Fishburn matrices, the flip corresponds to the reflection of a matrix in its antidiagonal.
- The sum of two Fishburn matrices is a Fishburn matrix.
(1) How do flip and sum act on the corresponding ascent sequences?
(2) How do flip and sum act on Fishburn trees?
(3) Is there a natural involution on the set of Fishburn trees?

Applications: Subfamilies

Fishburn trees Modified seq. Fishburn mat. (2+2)-free posets

Strictly decreasing	Primitive	Binary	Primitive
Comb-shaped	Self-modified	Positive diagonal	\exists Chain of max length
(\star)	$\hat{\mathcal{A}}(212,312)$	NW-free	N-free (Series-parallel)
(\dagger)	$\hat{\mathcal{A}}(231)$	SW-free	$(\mathbf{3}+\mathbf{1})$-free (Semiorders)
By intersection of the above two rows	$\hat{\mathcal{A}}(212,312,231)$	$($ NW,SW)-free	N - and (3+1)-free

$$
\begin{aligned}
& (\star) \nexists u, v: \mathfrak{l}(u)<\mathfrak{l}(v) \leq \mathfrak{b}(u)<\mathfrak{b}(v) \\
& (\dagger) \nexists u, v: \mathfrak{b}(u)<\mathfrak{b}(v), \mathfrak{l}(u)>\mathfrak{l}(v)
\end{aligned}
$$

Applications: Statistics

Fishburn trees Modified seq. Fishburn mat. (2+2)-free posets

\# nodes	Length	Sum of entries	\# elements
Biggest node label	Maximum value	\# rows/cols	\# levels
$\|\{u: \mathfrak{l}(u)=j\}\|$	\# copies of j	$\sum_{i} a_{i, j}$	$\left\|L_{j}\right\|$
$\|\{u: \mathfrak{b}(u)=\mathfrak{l}(u)\}\|$	\# weak ltr-max	Trace	$\sum_{i}\left\|L_{i} \cap D_{i+1}\right\|$
$\|\{u: \mathfrak{l}(u)=1\}\|$	\# copies of 1	$\sum_{i} a_{i, 1}$	$\#$ minimal elements
$\|\operatorname{rpath}(r)\|$	\# weak rtl-max	$\sum_{j} a_{k, j}$	\# maximal elements
$\mathfrak{l}\left(v_{n}\right)$	x_{n}	index	Minimal level of a maximal element

Applications: Statistics

Fishburn trees Modified seq. Fishburn mat. (2+2)-free posets

\# nodes	Length	Sum of entries	\# elements
Biggest node label	Maximum value	\# rows/cols	\# levels
$\|\{u: \mathfrak{l}(u)=j\}\|$	\# copies of j	$\sum_{i} a_{i, j}$	$\left\|L_{j}\right\|$
$\|\{u: \mathfrak{b}(u)=\mathfrak{l}(u)\}\|$	\# weak ltr-max	Trace	$\sum_{i}\left\|L_{i} \cap D_{i+1}\right\|$
$\|\{u: \mathfrak{l}(u)=1\}\|$	\# copies of 1	$\sum_{i} a_{i, 1}$	\# minimal elements
$\|\operatorname{rpath}(r)\|$	\# weak rtl-max	$\sum_{j} a_{k, j}$	\# maximal elements
$\mathfrak{l}\left(v_{n}\right)$	x_{n}	index	Minimal level of a maximal element

Thanks!

