Mallows processes and the

expanded hypercube

Mallows permutations

Mallows processes

Expanded hypercube

Mallows permutations

Mallows processes

Expanded hypercube

Tableau representation

Tableau representation

Tableau representation

Mallows permutations

Mallows processes

Expanded hypercube

Idea:

If Mallows permutations are defined with $n \in \mathbb{N}$ and $q \in [0, \infty)$, can we define a family of **interesting** stochastic processes $\mathcal{M}^n = (\mathcal{M}^n_t)_{t \in [0,\infty)}$ such that, for any $t \in [0,\infty)$, \mathcal{M}^n_t is a Mallows permutation with parameters n and t?

 $t \to \infty$

If independence of the processes, say it has

independent inversions.

t = 0

 $t \to \infty$

Say it is **strictly monotone** if the blocks move from left to right.

If independence of the processes, say it has independent inversions.

Say it is **strictly monotone** if the blocks move from left to right.

Say it is **smooth** if no block moves by more than one step at a time and no two blocks move at the same time.

independent inversions.

1	t	t^2	t^3	t^4	t^5	t^6
1	t	t^2	t^3	t^4	t^5	
1	t	t^2	t^3	t^4		
1	t	t^2	t^3			
1	t	t^2				
1	t		•			
1		•				

$$\mathbb{P}\left(\left\lfloor \frac{\log(1-U(1-t^j))}{\log t} \right\rfloor = k \right) = \frac{t^k(1-t)}{1-t^j} \propto t^k$$

Markov and Mallows

Theorem (**†** 2022)

There exists a unique Markovian regular Mallows process.

Definition

Given a smooth and strictly increasing Mallows process \mathcal{M}^n , let $\tilde{\mathcal{M}}^n = (\tilde{\mathcal{M}}^n_k)_{0 \le k \le {n \choose 2}}$ be the corresponding jumping process defined as the sequence of permutations taken by \mathcal{M}^n .

Definition

Given a smooth and strictly increasing Mallows process \mathcal{M}^n , let $\tilde{\mathcal{M}}^n = (\tilde{\mathcal{M}}^n_k)_{0 \le k \le {n \choose 2}}$ be the corresponding jumping process defined as the sequence of permutations taken by \mathcal{M}^n .

? Note that
$$\operatorname{Inv}\left(\tilde{\mathcal{M}}_{k}^{n}\right) = k$$
 for all $0 \leq k \leq {n \choose 2}$.

Theorem (**†** 2022)

There exists a unique Markovian regular Mallows process.

Theorem (**†** 2022)

There exists a unique Markovian regular Mallows process.

Conjecture (**†** 2022)

Let \mathcal{M}^n be the unique Markovian regular Mallows process. Then the corresponding jumping process $\tilde{\mathcal{M}}^n$ is **not** a Markov chain.

Mallows permutations

Mallows processes

n = 1	n = 2
n = 3	n = 4

n = 1	n = 2
n = 3	n = 4

Definition

Write \mathcal{H}_n for the graph on the set of permutations corresponding to exactly one jump to the right on the tableau representation of the permutation. In other words, for any $\sigma, \sigma' \in \mathcal{S}_n$

$$(\sigma, \sigma') \in \mathcal{H}_n \iff \sum_{j=1}^n |\operatorname{Inv}_j(\sigma) - \operatorname{Inv}_j(\sigma')| = 1.$$

Mallows permutations

Mallows processes

Example

Example

Example

n=4

n=4

Example

Example

Open problem

Can we prove the existence of such weights on \mathcal{H}_n for any $n \ge 1$?

Can we prove the existence of such weights on \mathcal{H}_n for any $n \ge 1$?

Can we characterize the values of these weights?

Can we prove the existence of such weights on \mathcal{H}_n for any $n \ge 1$?

Can we characterize the values of these weights?

This would prove that doubly Markovian smooth and strictly increasing Mallows processes exist.

Thank you!

Thank you!

Thank you!

Thank you!

Thank you! Thank you!

Mallows processes and the expanded hypercube