Mallows processes and the

expanded hypercube

Benoit Corsini

으 Mallows permutations

IG Mallows processes

Expanded hypercube

Open problem

으 Mallows permutations
$\underset{~}{2} \rightarrow$ Mallows processes

Expanded hypercube

Open problem

Tableau representation

Tableau representation

Random geometric tableau

Random geometric tableau

Fix $q \in[0, \infty)$

Random geometric tableau

Fix $q \in[0, \infty)$

	1	q	q^{2}	q^{3}	q^{4}	q^{5}	q^{6}
	1	q	q^{2}	q^{3}	q^{4}	q^{5}	
	1	q	q^{2}	q^{3}	q^{4}		
	1	q	q^{2}	q^{3}			
	1	q	q^{2}				
	1	q					
	1						

Random geometric tableau

Fix $q \in[0, \infty)$

$\cdots<$	1	q	q^{2}	q^{3}	q^{4}	q^{5}	q^{6}	$/\left(1+\ldots+q^{6}\right)$
	1	q	q^{2}	q^{3}	q^{4}	q^{5}		$\left.\ldots+q^{5}\right)$
	1	q	q^{2}	q^{3}	q^{4}		...	
	1	q	q^{2}	q^{3}	$/\left(1+\ldots+q^{3}\right)$			
	1	q	q^{2}	$/\left(1+q+q^{2}\right)$				
	1	q	$/(1+q)$					
	1	1						

Random geometric tableau

Fix $q \in[0, \infty)$
$\Perp\left\{\begin{array}{c|c|c|c|c|c|l|l}\hline 1 & q & q^{2} & q^{3} & q^{4} & q^{5} & q^{6} & /\left(1+\ldots+q^{6}\right) \\ \hline 1 & q & q^{2} & q^{3} & q^{4} & q^{5} & /\left(1+\ldots+q^{5}\right) \\ \hline 1 & q & q^{2} & q^{3} & q^{4} & /\left(1+\ldots+q^{4}\right) \\ \hline 1 & q & q^{2} & q^{3} & /\left(1+\ldots+q^{3}\right) \longrightarrow\end{array} \longrightarrow \sigma \sim \operatorname{MALLOWS}(n, q)\right.$

Random geometric tableaux

Random geometric tableaux

Random geometric tableaux

$q=0.5$

$q=1$

$q=2$

$q \rightarrow \infty$

Random geometric tableaux

$q=1$

$q=2$

$q \rightarrow \infty$

Mallows permutations

コ 34 Mallows processes

Expanded hypercube

Open problem

Idea:

If Mallows permutations are defined with $n \in \mathbb{N}$ and $q \in[0, \infty)$, can we define a family of interesting stochastic processes $\mathcal{M}^{n}=\left(\mathcal{M}_{t}^{n}\right)_{t \in[0, \infty)}$ such that, for any $t \in[0, \infty), \mathcal{M}_{t}^{n}$ is a

Mallows permutation with parameters n and t ?

If independence of the processes, say it has independent inversions.

Properties of Mallows processes

Properties of Mallows processes

Properties of Mallows processes

Say it is strictly monotone if the blocks move from left to right.

Properties of Mallows processes

Say it is strictly monotone if the blocks move from left to right.
Say it is smooth if no block moves by more than one step at a time and no two blocks move at the same time.

Constructing a regular Mallows process

Constructing a regular Mallows process

1	t	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}
1	t	t^{2}	t^{3}	t^{4}	t^{5}	
1	t	t^{2}	t^{3}	t^{4}		
1	t	t^{2}	t^{3}			
1	t	t^{2}				
1	t					
1						

Constructing a regular Mallows process

Constructing a regular Mallows process

Constructing a regular Mallows process

$$
8 \mathbb{P}\left(\left\lfloor\frac{\log \left(1-U\left(1-t^{j}\right)\right)}{\log t}\right\rfloor=k\right)=\frac{t^{k}(1-t)}{1-t^{j}} \propto t^{k}
$$

Markov and Mallows

Markov and Mallows

Theorem (in 2022)
There exists a unique Markovian regular Mallows process.

Jumping process

Definition

Given a smooth and strictly increasing Mallows process \mathcal{M}^{n}, let $\tilde{\mathcal{M}}^{n}=\left(\tilde{\mathcal{M}}_{k}^{n}\right)_{0 \leq k \leq\binom{ n}{2}}$ be the corresponding jumping process defined as the sequence of permutations taken by \mathcal{M}^{n}.

Jumping process

Definition

Given a smooth and strictly increasing Mallows process \mathcal{M}^{n}, let $\tilde{\mathcal{M}}^{n}=\left(\tilde{\mathcal{M}}_{k}^{n}\right)_{0 \leq k \leq\binom{ n}{2}}$ be the corresponding jumping process defined as the sequence of permutations taken by \mathcal{M}^{n}.

8 Note that $\operatorname{Inv}\left(\tilde{\mathcal{M}}_{k}^{n}\right)=k$ for all $0 \leq k \leq\binom{ n}{2}$.

Markov and Mallows

Theorem (${ }^{(1)}$ 2022)
There exists a unique Markovian regular Mallows process.

Markov and Mallows

Theorem (in 2022)
There exists a unique Markovian regular Mallows process.

Conjecture (in 2022)
Let \mathcal{M}^{n} be the unique Markovian regular Mallows process. Then the corresponding jumping process $\tilde{\mathcal{M}}^{n}$ is not a Markov chain.

Mallows permutations

2G Mallows processes

Expanded hypercube

Open problem

The expanded hypercube

The expanded hypercube

$$
n=1 \quad n=2
$$

$$
n=3 \quad n=4
$$

The expanded hypercube

The expanded hypercube

The expanded hypercube

The expanded hypercube

The expanded hypercube

The expanded hypercube

Definition

Write \mathcal{H}_{n} for the graph on the set of permutations corresponding to exactly one jump to the right on the tableau representation of the permutation. In other words, for any $\sigma, \sigma^{\prime} \in \mathcal{S}_{n}$

$$
\left(\sigma, \sigma^{\prime}\right) \in \mathcal{H}_{n} \Longleftrightarrow \sum_{j=1}^{n}\left|\operatorname{Inv}_{j}(\sigma)-\operatorname{Inv}_{j}\left(\sigma^{\prime}\right)\right|=1
$$

Mallows permutations

2 Mallows processes

Expanded hypercube

Open problem

Example

Example

Example

Example

Open problem

Questions:

Questions:

Can we prove the existence of such weights on \mathcal{H}_{n} for any $n \geq 1$?

Questions:

Can we prove the existence of such weights on \mathcal{H}_{n} for any $n \geq 1$?
Can we characterize the values of these weights?

Questions:

Can we prove the existence of such weights on \mathcal{H}_{n} for any $n \geq 1$?
Can we characterize the values of these weights?

8 This would prove that doubly Markovian smooth and strictly increasing Mallows processes exist.

