# Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants 

Bishal Deb (he/him)<br>University College London

July 6, 2023
Permutation Patterns 2023
University of Burgundy

## Cycle classification

For a permutation $\sigma$, compare each $i$ with $\sigma(i)$ and $\sigma^{-1}(i)$ :

## Cycle classification

For a permutation $\sigma$, compare each $i$ with $\sigma(i)$ and $\sigma^{-1}(i)$ :

- cycle valley $\sigma^{-1}(i)>i<\sigma(i)$
- cycle peaks $\sigma^{-1}(i)<i>\sigma(i)$
- cycle double rise $\sigma^{-1}(i)<i<\sigma(i)$
- cycle double fall $\sigma^{-1}(i)>i>\sigma(i)$
- fixed point $i=\sigma(i)=\sigma^{-1}(i)$

Consider $\sigma$ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$ :

- $i$ is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- $i$ is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima

Consider $\sigma$ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$ :

- $i$ is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- $i$ is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each $i$ is one of the following four types:

Consider $\sigma$ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$ :

- $i$ is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- $i$ is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each $i$ is one of the following four types:
- rar - record-antirecord

- erec - exclusive record
- earec - exclusive antirecord $\stackrel{1 / 4}{\mid \%}$
- nrar - neither record-antirecord \#


## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

- ereccval
- nrcval


## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak


## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise


## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall


## Record-and-cycle classification

Each $i$ is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall
- rar
- nrfix


## Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

## Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

## Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right) t^{n} \\
= & \frac{1}{1-z \cdot t-\frac{x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+w\right) \cdot t-\frac{\left(x_{1}+u_{1}\right)\left(y_{1}+v_{1}\right) \cdot t^{2}}{1-\left(\left(x_{2}+u_{2}\right)+\left(y_{2}+v_{2}\right)+w\right) \cdot t-\frac{\left(x_{1}+2 u_{1}\right)\left(y_{1}+2 v_{1}\right) \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

## Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

## Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right) t^{n} \\
= & \frac{1}{1-z \cdot t-\frac{x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+w\right) \cdot t-\frac{\left(x_{1}+u_{1}\right)\left(y_{1}+v_{1}\right) \cdot t^{2}}{1-\left(\left(x_{2}+u_{2}\right)+\left(y_{2}+v_{2}\right)+w\right) \cdot t-\frac{\left(x_{1}+2 u_{1}\right)\left(y_{1}+2 v_{1}\right) \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Proof uses the Foata-Zeilberger bijection (1990)

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction,

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction, then 10 variables,

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction, then 10 variables, then 18 variables

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction, then 10 variables, then 18 variables and finally 5 infinite families of variables

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction, then 10 variables, then 18 variables and finally 5 infinite families of variables

At around the same time, Blitvić-Steingrímsson (2021) independently came up with a 14 -variable continued fraction

In their paper, Sokal-Zeng first obtain a 4-variable continued fraction, then 10 variables, then 18 variables and finally 5 infinite families of variables

At around the same time, Blitvić-Steingrímsson (2021) independently came up with a 14 -variable continued fraction

They later found out that Randrianarivony (1998) had a 17 variable continued fraction.

## Can we count cycles as well?

## Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

## Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text {eareccpeak }(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!

## Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction! But can obtain J-fraction by specialising $y_{1}=v_{1}$ :

## Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!
But can obtain J-fraction by specialising $y_{1}=v_{1}$ :

## Conjecture (Sokal-Zeng (2022))

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, y_{1}, v_{2}, w, z, \lambda\right) t^{n} \\
&=\frac{1}{1-\lambda z \cdot t-\frac{\lambda x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+\lambda w\right) \cdot t-\frac{(\lambda+1)\left(x_{1}+u_{1}\right) y_{1} \cdot t^{2}}{1-\left(\left(x_{2}+v_{2}\right)+\left(y_{2}+v_{2}\right)+\lambda w\right) \cdot t-\frac{(\lambda+2)\left(x_{1}+2 u_{1}\right) y_{1} \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Used Biane bijection (1993).

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Used Biane bijection (1993).
Twist in story:
Can prove their full conjecture using Foata-Zeilberger bijection
We can count cycles in the Foata-Zeilberger bijection

## Foata-Zeilberger bijection

A Motzkin path is a path $(0,0) \rightarrow(n, 0)$ in the non-negative quadrant with steps $(1,1),(1,0),(1,-1)$

## Foata-Zeilberger bijection

A Motzkin path is a path $(0,0) \rightarrow(n, 0)$ in the non-negative quadrant with steps $(1,1),(1,0),(1,-1)$

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- $\sigma \in \mathfrak{S}_{n}$


## Foata-Zeilberger bijection

A Motzkin path is a path $(0,0) \rightarrow(n, 0)$ in the non-negative quadrant with steps $(1,1),(1,0),(1,-1)$
Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- $\sigma \in \mathfrak{S}_{n}$
- $\omega$ is a Motzkin path, where the level steps come in three different colours (red, blue, green)


## Foata-Zeilberger bijection

A Motzkin path is a path $(0,0) \rightarrow(n, 0)$ in the non-negative quadrant with steps $(1,1),(1,0),(1,-1)$
Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- $\sigma \in \mathfrak{S}_{n}$
- $\omega$ is a Motzkin path, where the level steps come in three different colours (red, blue, green)
- $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are labels on the steps of the Motzkin paths satisfying:


## Foata-Zeilberger bijection

A Motzkin path is a path $(0,0) \rightarrow(n, 0)$ in the non-negative quadrant with steps $(1,1),(1,0),(1,-1)$
Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- $\sigma \in \mathfrak{S}_{n}$
- $\omega$ is a Motzkin path, where the level steps come in three different colours (red, blue, green)
- $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are labels on the steps of the Motzkin paths satisfying:
- If step $i$ is $\lambda$ starting at height $h_{i}, \xi_{i} \in\left[0, h_{i}\right]$
- If step $i$ is $\searrow$ starting at height $h_{i}, \xi_{i} \in\left[0, h_{i}-1\right]$
- If step $i$ is $\rightarrow$ at height $h_{i}, \xi_{i} \in\left[0, h_{i}-1\right] \cup\left[0, h_{i}-1\right] \cup\{0\}$


## Description of $\sigma \rightarrow \omega$

- If $i$ is a cycle valley, step $i$ is $\not$
- If $i$ is a cycle peak, step $i$ is $\downarrow$
- If $i$ is a cycle double rise, cycle double fall or fixed, step $i$ is $\rightarrow, \rightarrow$ or $\rightarrow$ respectively.


## Description of $\sigma \rightarrow \omega$

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9} x$.

- Cval $=\{1,3\} \quad$ - Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$


## Description of $\sigma \rightarrow \omega$

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9} x$.

- Cval $=\{1,3\} \quad-$ Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

The Motzkin path $\omega$ is


## Description of labels $\sigma \rightarrow \xi$

For $i \in[n]$

$$
\xi_{i}=\left\{\begin{array}{lll}
\#\{j: j<i \text { and } \sigma(j)>\sigma(i)\} & \text { if } \sigma(i)>i & \text { if } i \in \text { Cval } \cup \text { Cdrise } \\
\#\{j: j>i \text { and } \sigma(j)<\sigma(i)\} & \text { if } \sigma(i)<i & \text { if } i \in \text { Cpeak } \cup \text { Cdfall } \\
0 & \text { if } \sigma(i)=i & \text { if } i \in \text { Fix }
\end{array}\right.
$$

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets

$$
\text { excedance indices } F=\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval }
$$

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets

$$
\begin{aligned}
& \text { excedance indices } F=\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
& \text { excedance values } F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak }
\end{aligned}
$$

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall $\cup$ Cval

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall $\cup$ Cval fixed points $H=\{i \in \sigma: i=\sigma(i)\}=$ Fix

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall $\cup$ Cval fixed points $H=\{i \in \sigma: i=\sigma(i)\}=$ Fix
(a) We can clearly read off the sets $F, F^{\prime}, G, G^{\prime}, H$ from the Motzkin path $\omega$.

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall $\cup$ Cval
fixed points $H=\{i \in \sigma: i=\sigma(i)\}=$ Fix
(a) We can clearly read off the sets $F, F^{\prime}, G, G^{\prime}, H$ from the Motzkin path $\omega$.
(b) Construction of $\left.\sigma\right|_{F}: F \rightarrow F^{\prime}$. Let $F=\left\{i_{1}<\ldots<i_{k}\right\}$. Let $j_{1} j_{2} \cdots j_{k}$ be the permutation of the letters $F^{\prime}$, such that for any $\alpha$, the number of letters larger than $j_{\alpha}$ to the left of $j_{\alpha}$ is $\xi_{i_{\alpha}}$. Then we define $\sigma\left(i_{\alpha}\right)=j_{\alpha}$ (this is the left-to-right inversion table).

## Description of the inverse bijection $(\omega, \xi) \mapsto \sigma$

Define the sets
excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise $\cup$ Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise $\cup$ Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall $\cup$ Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall $\cup$ Cval
fixed points $H=\{i \in \sigma: i=\sigma(i)\}=$ Fix
(a) We can clearly read off the sets $F, F^{\prime}, G, G^{\prime}, H$ from the Motzkin path $\omega$.
(b) Construction of $\left.\sigma\right|_{F}: F \rightarrow F^{\prime}$. Let $F=\left\{i_{1}<\ldots<i_{k}\right\}$. Let $j_{1} j_{2} \cdots j_{k}$ be the permutation of the letters $F^{\prime}$, such that for any $\alpha$, the number of letters larger than $j_{\alpha}$ to the left of $j_{\alpha}$ is $\xi_{i_{\alpha}}$. Then we define $\sigma\left(i_{\alpha}\right)=j_{\alpha}$ (this is the left-to-right inversion table).
We similarly define $\left.\sigma\right|_{G}: G \rightarrow G^{\prime}$, except now we look at letters smaller to the right (this is the right-to-inversion table).

## An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\} \quad$ - Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$


## An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\} \quad$ - Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

The Motzkin path $\omega$ is


## An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\}$
- Cpeak $=\{7,9\}$
- Cdrise $=\{5\}$
Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

The Motzkin path $\omega$ is


The labels $\xi$ and the sets $F, F^{\prime}, G, G^{\prime}$ are:

| $i \in F$ | 1 | 3 | 5 |
| :---: | :---: | :---: | :---: |
| $\sigma(i) \in F^{\prime}$ | 7 | 5 | 9 |
| $\xi_{i}$ | 0 | 1 | 0 |


| $i \in G$ | 2 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sigma(i) \in G^{\prime}$ | 1 | 2 | 6 | 3 | 8 |
| $\xi_{i}$ | 0 | 0 | 1 | 0 | 0 |

## Laguerre digraph

## Definition

A Laguerre digraph of size $n$ is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

## Laguerre digraph

## Definition

A Laguerre digraph of size $n$ is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

Example:


## Connected components



## Connected components



Connected components

- Directed cycle
- Directed paths


## Connected components



Connected components

- Directed cycle
- Directed paths


## Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations

## Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations
(1) No paths - Cyclic structure of permutations


## Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations
(1) No paths - Cyclic structure of permutations


## Nomenclature

Foata-Strehl call them Laguerre configurations and used them to provide combinatorial interpretation of the Laguerre polynomials

## Nomenclature

Foata-Strehl call them Laguerre configurations and used them to provide combinatorial interpretation of the Laguerre polynomials

Other authors often use partial permutations

Foata-Strehl call them Laguerre configurations and used them to provide combinatorial interpretation of the Laguerre polynomials

Other authors often use partial permutations
Slightly different definitions

## Nomenclature

Foata-Strehl call them Laguerre configurations and used them to provide combinatorial interpretation of the Laguerre polynomials

Other authors often use partial permutations
Slightly different definitions
Laguerre digraphs after Sokal (2022)

## "History" of Foata-Zeilberger bijection

Start with all $n$ vertices and no edges

## "History" of Foata-Zeilberger bijection

Start with all $n$ vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$

## "History" of Foata-Zeilberger bijection

Start with all $n$ vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Stage (c): $i \in F$ (excedances) in decreasing order

## "History" of Foata-Zeilberger bijection

Start with all $n$ vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Stage (c): $i \in F$ (excedances) in decreasing order
This order is suggested by the inverse bijection and the inversion tables

## "History" of Foata-Zeilberger bijection. Stage (a)

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
At the end of this stage, the Laguerre digraph consists of loops at all vertices in $H$. All other vertices have no adjacent edges.

## "History" of Foata-Zeilberger bijection. Stage (b)

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
At the end of this stage, the resulting Laguerre digraph consists of loops at all vertices in $H$, and directed paths cycle peak $\rightarrow$ (cycle double fall)* $\rightarrow$ cycle valley

No edges adjacent to cycle double rises.

## "History" of Foata-Zeilberger bijection. Stage (b)

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
At the end of this stage, the resulting Laguerre digraph consists of loops at all vertices in $H$, and directed paths cycle peak $\rightarrow$ (cycle double fall)* $\rightarrow$ cycle valley

No edges adjacent to cycle double rises. No non-loop cycles yet

## "History" of Foata-Zeilberger bijection. Stage (b)

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
At the end of this stage, the resulting Laguerre digraph consists of loops at all vertices in $H$, and directed paths cycle peak $\rightarrow$ (cycle double fall)* $\rightarrow$ cycle valley

No edges adjacent to cycle double rises. No non-loop cycles yet

## "History" of Foata-Zeilberger bijection

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Loops at all vertices in $H$, and directed paths
cycle peak $\rightarrow$ (cycle double fall)* $\rightarrow$ cycle valley
Stage (c): $i \in F$ (excedances) in decreasing order

## "History" of Foata-Zeilberger bijection

Insert $i \rightarrow \sigma(i)$ in order
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Loops at all vertices in $H$, and directed paths
cycle peak $\rightarrow$ (cycle double fall)* $\rightarrow$ cycle valley
Stage (c): $i \in F$ (excedances) in decreasing order
A cycle is closed when $i$ is the final vertex of a path and $\sigma(i)$ is the initial vertex of the same path. We show that in such a situation, $i$ is a cycle valley. Exactly one choice of label $\xi_{i}$ that makes this possible.

## Story continues

This resolves the Sokal-Zeng conjecture (2022) for permutations

## Story continues

This resolves the Sokal-Zeng conjecture (2022) for permutations
Using similar ideas to a slightly different bijection have resolved a 4 -variable conjectured continued fraction due to Randrianarivony-Zeng (1996) for objects Genocchi numbers

## Story continues

This resolves the Sokal-Zeng conjecture (2022) for permutations Using similar ideas to a slightly different bijection have resolved a 4 -variable conjectured continued fraction due to Randrianarivony-Zeng (1996) for objects Genocchi numbers

Similar to Sokal-Zeng, have generalised these continued fractions to families of infinitely many variables

## A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on $\mathfrak{S}_{n}$ :

## Conjecture

The bistatistics (des $2, c y c$ ) and (pex,cyc) are equidistributed.

## A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on $\mathfrak{S}_{n}$ :

## Conjecture

The bistatistics (des ${ }_{2}, \mathrm{cyc}$ ) and (pex,cyc) are equidistributed.
Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

## Conjecture

$$
\sum_{n=0}^{\infty} y^{\operatorname{des}_{2} \sigma} \lambda^{\operatorname{cyc} \sigma}=\frac{1}{1-\lambda z-\frac{\lambda y z^{2}}{1-(\lambda+2) z-\underline{(\lambda+1)(y+1) z^{2}}}}
$$

## A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on $\mathfrak{S}_{n}$ :

## Conjecture

The bistatistics (des ${ }_{2}, \mathrm{cyc}$ ) and (pex,cyc) are equidistributed.
Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

## Conjecture

$$
\sum_{n=0}^{\infty} y^{\operatorname{des}_{2} \sigma} \lambda^{\mathrm{cyc} \sigma}=\frac{1}{1-\lambda z-\frac{\lambda y z^{2}}{1-(\lambda+2) z-\underline{(\lambda+1)(y+1) z^{2}}}}
$$

How do we resolve this???

Merci pour votre attention

## Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)


## Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

## Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Associated C-fraction outside of combinatorial literature

## Motzkin paths

Consider a Motzkin path, let's say

## Motzkin paths

Consider a Motzkin path, let's say


## Motzkin paths

Consider a Motzkin path, let's say


Assign weights:

- л: 1
- $\rightarrow$ from height $i \rightarrow i: \gamma_{i}$
- $\searrow$ from height $i \rightarrow(i-1): \beta_{i}$


## Motzkin paths

Consider a Motzkin path, let's say


Assign weights:

- л: 1
- $\rightarrow$ from height $i \rightarrow i: \gamma_{i}$
- $\searrow$ from height $i \rightarrow(i-1): \beta_{i}$


## Motzkin paths

Consider a Motzkin path, let's say


Weight $=\beta_{1} \beta_{2} \beta_{3} \beta_{4}^{2} \gamma_{2} \gamma_{3}$
Assign weights:

- л: 1
- $\rightarrow$ from height $i \rightarrow i: \gamma_{i}$
- $\searrow$ from height $i \rightarrow(i-1): \beta_{i}$


## Combinatorial Interpretation of J-fraction

J-fraction


## Combinatorial Interpretation of J-fraction

J-fraction
$\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}$

## Combinatorial Interpretation of J-fraction

J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

## Theorem (Flajolet '80)

The $a_{n}$ are weighted sum of Motzkin paths with $n$ steps.

## Combinatorial Interpretation of J-fraction

J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

## Theorem (Flajolet '80)

The $a_{n}$ are weighted sum of Motzkin paths with $n$ steps.
Gateway for proving continued fractions using bijective combinatorics :-D

