Combinatorial Stieltjes moment sequences

Andrew Elvey Price
CNRS, Université de Tours

July 2023

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.
Equivalently: (if $a_{0}=1$) There is some random variable X taking non-negative values such that $a_{n}=E\left(X^{n}\right)$

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.
Equivalently: (if $a_{0}=1$) There is some random variable X taking non-negative values such that $a_{n}=E\left(X^{n}\right)$
Example 1: If there is a density function $\mu(x)$, then

$$
a_{n}=\int_{0}^{\infty} x^{n} \mu(x) d x
$$

Example 2: If the measure is discrete then there are $c_{j}, d_{j} \geq 0$ satisfying

$$
a_{n}=\sum_{j} c_{j} d_{j}^{n}
$$

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.
Equivalently: ([Stieltjes, 1894]) There exist real numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ldots}}}
$$

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.
Equivalently: ([Stieltjes, 1894]) There exist real numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ldots}}}
$$

Equivalently: ([Stieltjes, 1894]) The matrices

$$
\left[\begin{array}{ccc}
a_{0} & a_{1} & \ldots \\
a_{1} & a_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] \text { and }\left[\begin{array}{ccc}
a_{1} & a_{2} & \ldots \\
a_{2} & a_{3} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] \text { are positive semi-definite. }
$$

Stieltues moment sequences

Definition: A stieltjes moment sequence is a sequence $a_{0}, a_{1}, a_{2}, \ldots$ such that:
There exists a positive measure ρ such that $a_{n}=\int_{0}^{\infty} x^{n} d \rho(x)$.
Equivalently: ([Stieltjes, 1894]) There exist real numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ldots}}}
$$

Equivalently: ([Stieltjes, 1894]) The matrices
$\left[\begin{array}{ccc}a_{0} & a_{1} & \ldots \\ a_{1} & a_{2} & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]$ and $\left[\begin{array}{ccc}a_{1} & a_{2} & \ldots \\ a_{2} & a_{3} & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]$ are positive semi-definite.

Question: Which counting sequences are Stieltjes moment sequences?

Properties of Stieltues moment sequences

If $\left(a_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence with generating function $A(t)$ then

- The ratios a_{n+1} / a_{n} are increasing (i.e., sequence is log-convex).
- The sequence $\left(a_{n} a_{n+2}-a_{n+1}^{2}\right)_{n \geq 0}$ is also a Stieltjes moment sequence
- All singularities of $A(t)$ lie in $\mathbb{R}_{\geq 0}$.
- We can produce "good" lower bounds on the growth rate

$$
\mu=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

Another property: Changing finitely many terms of a Stieltjes moment sequence growing at most exponentially never yields a different Stieltjes moment sequence with the same initial value

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

Conjecture: The sequence $\operatorname{Av}_{n}(1324)$ is a Stieltjes moment sequence

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

Conjecture: The sequence $\operatorname{Av}_{n}(1324)$ is a Stieltjes moment sequence Conjollary: the growth rate μ satisfies $\mu>10.302$

Story time: Back in 2018...

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

Conjecture: The sequence $\operatorname{Av}_{n}(1324)$ is a Stieltjes moment sequence Conjollary: the growth rate μ satisfies $\mu>10.302$
Previous best: $\mu \in(10.27,13.5)$ [Bevan, Brignall, EP, Pantone, 2020]

Story time:

Two other (mostly) independent groups were working on similar ideas:

- [Blitvić, Stiengrímsson,2020]: permutations counted with 14 "natural" parameters form a moment sequence for any non-negative specialisation of the parameters. Includes avoiders of avoiders of patterns of length 3 (classical, consecutive and vincular)
- [Sokal, Zeng, 2022]: Independently same counting sequences and parameters, part of project analysing Hankel total-positivity [Sokal, Zeng, Zhu, Pétréole, E.P., Deb, Gilmore, Chen, . . .]
General belief: For any permutation π, the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is a Stieltjes-moment sequence. [Blitvić, Kammoun, Stiengrímsson, Bostan, EP, Guttmann, Maillard, Clisby, Conway, Inoue]

TALK OUTLINE

- Part 1: Guessing Stieltjes-ness
- Part 1a: Algorithm
- Part 1b: Stieltjes moment sequences in OEIS
- Part 1c: Examples
- Part 2: Proving Stieltjes-ness for exactly solved sequences (Stieltjes inversion formula)
- Part 3: Proving Stieltjes-ness for excursions on graphs

Part 1: Guessing Stieltjes-ness

Part 1a: Algorithm for guessing Stieltjes-ness

COMPUTING CONTINUED FRACTION COEFFICIENTS α_{j}

Definition: Let a_{0}, a_{1}, \ldots be a sequence with generating function

$$
A(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ldots}}} .
$$

Recall: Sequence is Stieltjes \Longleftrightarrow all $\alpha_{j} \geq 0$.

COMPUTING CONTINUED FRACTION COEFFICIENTS α_{j}

Definition: Let a_{0}, a_{1}, \ldots be a sequence with generating function

$$
A(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ldots}}} .
$$

Recall: Sequence is Stieltjes \Longleftrightarrow all $\alpha_{j} \geq 0$.
Assume: $a_{0}, a_{1}, \ldots, a_{N}$ known exactly.
Define:

$$
A_{j}(t)=\frac{\alpha_{j}}{1-\frac{\alpha_{j+1} t}{1-\cdots}}
$$

Compute recursively, using

$$
A_{0}(t)=A(t) \quad \text { and } \quad A_{j}(t)=\frac{\alpha_{j}}{1-t A_{j+1}(t)}
$$

If $\alpha_{0}, \ldots, \alpha_{N}>0$, we guess the sequence is Stieltjes.

Computing continued fraction coefficients α_{j}

Recall: α_{j} 's and $A_{j}(t)$ determined by

$$
A_{0}(t)=A(t) \quad \text { and } \quad A_{j}(t)=\frac{\alpha_{j}}{1-t A_{j+1}(t)}
$$

COMPUTING CONTINUED FRACTION COEFFICIENTS α_{j}

Recall: α_{j} 's and $A_{j}(t)$ determined by

$$
A_{0}(t)=A(t) \quad \text { and } \quad A_{j}(t)=\frac{\alpha_{j}}{1-t A_{j+1}(t)}
$$

Euler-Viskovatov algorithm: [Sokal, 2022]
Recursively define $B_{j}(t)=A_{j}(t) B_{j-1}(t)$ and $B_{-1}(t)=1$. Then

$$
\frac{B_{j}(t)}{B_{j-1}(t)}=\frac{\alpha_{j}}{1-t \frac{B_{j+1}(t)}{B_{j}(t)}}
$$

Expanding yields

$$
B_{j}(t)-t B_{j+1}(t)=\alpha_{j} B_{j-1}(t)
$$

COMPUTING CONTINUED FRACTION COEFFICIENTS α_{j}

Recall: α_{j} 's and $A_{j}(t)$ determined by

$$
A_{0}(t)=A(t) \quad \text { and } \quad A_{j}(t)=\frac{\alpha_{j}}{1-t A_{j+1}(t)}
$$

Euler-Viskovatov algorithm: [Sokal, 2022]
Recursively define $B_{j}(t)=A_{j}(t) B_{j-1}(t)$ and $B_{-1}(t)=1$. Then

$$
B_{j}(t)-t B_{j+1}(t)=\alpha_{j} B_{j-1}(t)
$$

COMPUTING CONTINUED FRACTION COEFFICIENTS α_{j}

Recall: α_{j} 's and $A_{j}(t)$ determined by

$$
A_{0}(t)=A(t) \quad \text { and } \quad A_{j}(t)=\frac{\alpha_{j}}{1-t A_{j+1}(t)}
$$

Euler-Viskovatov algorithm: [Sokal, 2022]
Recursively define $B_{j}(t)=A_{j}(t) B_{j-1}(t)$ and $B_{-1}(t)=1$. Then

$$
B_{j}(t)-t B_{j+1}(t)=\alpha_{j} B_{j-1}(t)
$$

Algorithm:

Initialise:

$$
B_{-1}(t)=1, \quad B_{0}(t)=a_{0}+a_{1} t+\cdots+a_{N} t^{N}+O\left(t^{N+1}\right)
$$

Recursive determine $\alpha_{j}, B_{j+1}(t)+O\left(t^{N-j}\right)$ using

$$
\alpha_{j}=B_{j}(0) / B_{j-1}(0), \quad B_{j+1}(t)=\frac{1}{t}\left(B_{j}(t)-\alpha_{j} B_{j-1}(t)\right) .
$$

Part 1b: Stieltjes moment sequences in OEIS

Guessing Stieltues-ness with OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS
sequences with at least 15 terms (only considering terms a_{n} with $n \leq 150$ and $a_{n} \leq 10^{150}$).

Guessing Stieltues-ness with OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS
sequences with at least 15 terms (only considering terms a_{n} with $n \leq 150$ and $a_{n} \leq 10^{150}$).
For 6719 sequences the terms are consistent with being Stieltjes

Guessing Stieltues-ness with OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS
sequences with at least 15 terms (only considering terms a_{n} with $n \leq 150$ and $a_{n} \leq 10^{150}$).
For 6719 sequences the terms are consistent with being Stieltjes $6719-\epsilon$ open questions: Which of these sequences are really Stieltjes?

Guessing Stieltues-ness with OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS
sequences with at least 15 terms (only considering terms a_{n} with $n \leq 150$ and $a_{n} \leq 10^{150}$).
For 6719 sequences the terms are consistent with being Stieltjes $6719-\epsilon$ open questions: Which of these sequences are really Stieltjes?

Refined results:

- In 1667 such cases, one of the terms $\alpha_{j}=0$, so the generating function $A(t)$ is rational
- In 798 cases (including 328 rational cases), the coefficients α_{j} are all integers.
- For 7344 sequences the first 15 terms are consistent with being Stieltjes (625 of these not Stieltjes because of later terms)

Part 1b: Examples of (possibly) Stieltjes moment sequences in OEIS

EXAMPLE: 1234-AVOIDERS

Plot of α_{n} vs. n for the sequence $a_{n}=\left|\operatorname{Av}_{n}(1234)\right|$.

EXAMPLE: 1342-AVOIDERS

Plot of α_{n} vs. n for the sequence $a_{n}=\left|\operatorname{Av}_{n}(1342)\right|$.

EXAMPLE: 1324-AVOIDERS

Plot of α_{n} vs. n.

OTHER SEQUENCES STARTING $1,1,2,6,23$

Of 69 OEIS sequences starting 1,1,2,6,23 there are 16 potential Stieltjes moment sequences

SEQUENCES STARTING 1,1,2,6,23

A110447: $\operatorname{Av}(\underline{3142})$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A113227: $\operatorname{Av}(1 \underline{23} 4)$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A125273: $\operatorname{Av}(1423)$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A098746: $\operatorname{Av}(4231,42513)$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A213090: $\operatorname{Av}(4231,35142,42513,351624)$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A263778: 120-avoiding inversion sequences

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A187761: Maps $f:\{1,2, \ldots, n\}$ satisfying $f(j) \leq j$ and $f(f(j))=f(f(f(j)))$.

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A007555: Standard paths in composition poset

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A352367: Something to do with chordal graphs

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A030266: $A(t)=1+t A(t) A(t A(t))$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

$$
\text { A125273: } A(t)=1+\frac{t}{1-t} A\left(\frac{t}{(1-t)^{2}}\right)
$$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

$$
\mathrm{A} 193321: A(t)=\sum_{n \geq 0} t^{n}\left(\prod_{k=1}^{n} \frac{1-k t}{1-2 k t}\right)
$$

Plot of α_{n} vs. n.

SEQUENCES STARTING 1,1,2,6,23

A192315: $A(t)^{2}=\sum_{n \geq 0} t^{n} A(t)^{2^{n}}$

Plot of α_{n} vs. n.

Stieltues-ness results for permutation classes

Principal classes:

- Solved classes $\operatorname{Av}(1 \ldots m)$ and $\operatorname{Av}(1342)$ known to be counted by Stieltjes moment sequence [Rains, 1998],
[Bostan,EP,Guttmann,Maillard, 2020]
- The sequence $\mathrm{Av}_{n}(1324)$ seems to be Stieltjes (using 50 terms [Conway,Guttmann,Zinn-Justin,2018])
- The sequence $\operatorname{Av}_{n}(12534)$ seems to be Stieltjes (using 38 terms [Biers-Ariel,2019])
- For each (remaining) pattern π of length 5, the sequence $\mathrm{Av}_{n}(\pi)$ seems to be Stieltjes (using 23 to 27 terms [Clisby,Conway,Guttmann,Inoue, 2022])

Stieltues-ness results for permutation classes

Principal vincular classes

- Sometimes Stieltjes but not in general
- $\operatorname{Av}(\underline{1234})$ not Stieltjes: in this case $\alpha_{6}<0$
- Question: Can one characterise vincular classes that are Stieltjes?

Stieltues-ness results for permutation classes

Principal vincular classes

- Sometimes Stieltjes but not in general
- $\operatorname{Av}(\underline{1234})$ not Stieltjes: in this case $\alpha_{6}<0$
- Question: Can one characterise vincular classes that are Stieltjes?

Classical finitely based classes

- Not generally Stieltjes !
- For π, τ of lengths 3 and 4 , respectively, there are 9 Wilf classes for $\operatorname{Av}\left(\pi_{1}, \pi_{2}\right)$. Only 1 is Stieltjes: $\operatorname{Av}_{n}(123,2143)$
- For π, τ both of lengths 4 , respectively, there are 38 Wilf classes for $\operatorname{Av}\left(\pi_{1}, \pi_{2}\right)$. Only 8 are (possibly) Stieltjes:
- $\operatorname{Av}(4321,4123)$ has a rational generating function
- The other 7 have algebraic generating functions
- Question: Can one characterise the permutations classes that are Stieltjes?

Stieltues 2 by 4 CLASSes

8 (possibly) Stieltjes Wilf classes for 2 by 4 patterns.

Stieltues 2 by 4 CLASSes

8 (possibly) Stieltjes Wilf classes for 2 by 4 patterns.
Weird property: Every case with non-trivial Wilf equivalence is (possibly) Stiletjes.

Part 2: Stieltjes inversion formula

[Bostan,EP,Guttmann,Maillard]

Stieltues inversion formula

Assume a_{0}, a_{1}, \ldots is a Stieltjes moment sequence with

$$
a_{n}=\int_{0}^{\tau} x^{n} \mu(x) d x
$$

When $|z|>\tau$, the generating function $A(t)$ satisfies

$$
\frac{1}{z} A\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}}=\int_{0}^{\tau} \sum_{n=0}^{\infty} \frac{x^{n}}{z^{n+1}} \mu(x) d x=\int_{0}^{\tau} \frac{1}{z-x} \mu(x) d x
$$

Stieltues inversion formula

Assume a_{0}, a_{1}, \ldots is a Stieltjes moment sequence with

$$
a_{n}=\int_{0}^{\tau} x^{n} \mu(x) d x .
$$

When $|z|>\tau$, the generating function $A(t)$ satisfies

$$
\frac{1}{z} A\left(\frac{1}{z}\right)=\int_{0}^{\tau} \frac{1}{z-x} \mu(x) d x
$$

Stieltues inversion formula

Assume a_{0}, a_{1}, \ldots is a Stieltjes moment sequence with

$$
a_{n}=\int_{0}^{\tau} x^{n} \mu(x) d x
$$

When $|z|>\tau$, the generating function $A(t)$ satisfies

$$
\frac{1}{z} A\left(\frac{1}{z}\right)=\int_{0}^{\tau} \frac{1}{z-x} \mu(x) d x=: F(z)
$$

Stieltues inversion formula

Assume a_{0}, a_{1}, \ldots is a Stieltjes moment sequence with

$$
a_{n}=\int_{0}^{\tau} x^{n} \mu(x) d x
$$

When $|z|>\tau$, the generating function $A(t)$ satisfies

$$
\frac{1}{z} A\left(\frac{1}{z}\right)=\int_{0}^{\tau} \frac{1}{z-x} \mu(x) d x=: F(z)
$$

Stieltjes inversion formula:

$$
\mu(x)=-\frac{1}{2 \pi i} \lim _{\epsilon \rightarrow 0^{+}}(F(x+\epsilon i)-F(x-\epsilon i))
$$

Checking Stieltjes-ness with inversion formula

Let a_{0}, a_{1}, \ldots be a sequence with exponential growth rate (at most) τ. To check if sequence is Stieltjes:

- For $|z|>\tau$, define $F(z)=\frac{1}{z} A\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}}$.

Checking Stieltjes-ness with inversion formula

Let a_{0}, a_{1}, \ldots be a sequence with exponential growth rate (at most) τ. To check if sequence is Stieltjes:

- For $|z|>\tau$, define $F(z)=\frac{1}{z} A\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}}$.
- If Stieltjes: $F(z)$ extends analytically to $\mathbb{C} \backslash[0, \tau]$.

Checking Stieltjes-ness with inversion formula

Let a_{0}, a_{1}, \ldots be a sequence with exponential growth rate (at most) τ. To check if sequence is Stieltjes:

- For $|z|>\tau$, define $F(z)=\frac{1}{z} A\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}}$.
- If Stieltjes: $F(z)$ extends analytically to $\mathbb{C} \backslash[0, \tau]$.
- For $x \in[0, \tau]$, define

$$
\mu(x)=-\frac{1}{2 \pi i} \lim _{\epsilon \rightarrow 0^{+}}(F(x+\epsilon i)-F(x-\epsilon i)) .
$$

Checking Stieltjes-ness with inversion formula

Let a_{0}, a_{1}, \ldots be a sequence with exponential growth rate (at most) τ. To check if sequence is Stieltjes:

- For $|z|>\tau$, define $F(z)=\frac{1}{z} A\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}}$.
- If Stieltjes: $F(z)$ extends analytically to $\mathbb{C} \backslash[0, \tau]$.
- For $x \in[0, \tau]$, define

$$
\mu(x)=-\frac{1}{2 \pi i} \lim _{\epsilon \rightarrow 0^{+}}(F(x+\epsilon i)-F(x-\epsilon i)) .
$$

- Then $\mu(x)$ is the density. Stieltjes $\Longleftrightarrow \mu(x)$ takes only non-negative values.

Example: Catalan numbers

Generating function

$$
C(t)=1+t+2 t^{2}+5 t^{2}+\cdots=\frac{1-\sqrt{1-4 t}}{2 t}
$$

Then

$$
F(z):=\frac{1}{z} C\left(\frac{1}{z}\right)=\frac{1}{2}\left(1-\sqrt{\frac{z-4}{z}}\right) .
$$

This is analytic on $\mathbb{C} \backslash[0,4]$, so the density function is

$$
\mu(x)=-\frac{1}{2 \pi i} \lim _{\epsilon \rightarrow 0^{+}}(F(x+\epsilon i)-F(x-\epsilon i))=\frac{1}{2 \pi} \sqrt{\frac{4-x}{x}} .
$$

Positive on [0, 4], so sequence is Stieltjes.

EXAMPLE: 1342-AVOIDING PERMUTATIONS

(Bóna, 1997): The generating function

$$
A(t):=\sum_{n=0}^{\infty} A v_{n}(1342) t^{n}=\frac{1+20 t-8 t^{2}+(1-8 t)^{3 / 2}}{2(1+t)^{3}}
$$

Then

$$
F(z):=\frac{1}{z} A\left(\frac{1}{z}\right)=\frac{z^{2}+20 z-8+\sqrt{z(z-8)^{3}}}{2(z+1)^{3}}
$$

This is analytic on $\mathbb{C} \backslash[0,8]$, so the density function is

$$
\mu(x)=-\frac{1}{2 \pi i} \lim _{\epsilon \rightarrow 0^{+}}(F(x+\epsilon i)-F(x-\epsilon i))=\frac{(8-x)^{3 / 2} \sqrt{x}}{2 \pi(1+x)^{3}} .
$$

Positive for $x \in[0,8]$, so sequence is Stieltjes.

DENSITY FOR 1342-AVOIDING PERMUTATIONS

Density function for $A v_{n}(1342)$.

EXAMPLE: 1234-AVOIDING PERMUTATIONS

From known formula for 1234 avoiders, we have (for $|z|$ large)
$F(z):=\frac{1}{z} A\left(\frac{1}{z}\right)=\frac{z+5}{6}-\frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6}{ }_{2} F_{1}\left(\left[-\frac{1}{4}, \frac{3}{4}\right],[1], \frac{-64 z^{3}}{(z-1)(z-9)^{3}}\right)$.

EXAMPLE: 1234-AVOIDING PERMUTATIONS

From known formula for 1234 avoiders, we have (for $|z|$ large)
$F(z):=\frac{1}{z} A\left(\frac{1}{z}\right)=\frac{z+5}{6}-\frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6}{ }_{2} F_{1}\left(\left[-\frac{1}{4}, \frac{3}{4}\right],[1], \frac{-64 z^{3}}{(z-1)(z-9)^{3}}\right)$.
Expression not analytic on $\mathbb{C} \backslash[0,9]$.

Non-analytic points of $F(z)$.

EXAMPLE: 1234-AVOIDING PERMUTATIONS

From known formula for 1234 avoiders, we have (for $|z|$ large)
$F(z):=\frac{1}{z} A\left(\frac{1}{z}\right)=\frac{z+5}{6}-\frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6}{ }_{2} F_{1}\left(\left[-\frac{1}{4}, \frac{3}{4}\right],[1], \frac{-64 z^{3}}{(z-1)(z-9)^{3}}\right)$.
Expression not analytic on $\mathbb{C} \backslash[0,9]$.
Using different expressions for different regions yields an analytic function $\hat{F}(z)$ on $\mathbb{C} \backslash[0,9]$ equal to $F(z)$ for z large.

EXAMPLE: 1234-AVOIDING PERMUTATIONS

From known formula for 1234 avoiders, we have (for $|z|$ large)
$F(z):=\frac{1}{z} A\left(\frac{1}{z}\right)=\frac{z+5}{6}-\frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6}{ }_{2} F_{1}\left(\left[-\frac{1}{4}, \frac{3}{4}\right],[1], \frac{-64 z^{3}}{(z-1)(z-9)^{3}}\right)$.
Expression not analytic on $\mathbb{C} \backslash[0,9]$.
Using different expressions for different regions yields an analytic function $\hat{F}(z)$ on $\mathbb{C} \backslash[0,9]$ equal to $F(z)$ for z large.
By the Stieltjes inversion formula

$$
\begin{array}{ll}
\mu(x)=-\frac{1}{\pi} \Im(\hat{F}(z))=-\frac{3}{\pi} \Im(F(z)) & \text { for } x \in[1,9], \\
\mu(x)=-\frac{1}{\pi} \Im(\hat{F}(z))=\frac{3}{\pi} \Re(F(z)) & \text { for } x \in[0,1] .
\end{array}
$$

These are positive so the sequence is Stieltjes.

DENSITY FOR 1234-AVOIDING PERMUTATIONS

Density function for $A v_{n}(1234)$.

$1234 \cdots k$-AVOIDERS AS A MOMENT SEQUENCE

The following is a result of [Rains, 1998]:

- Let U be a Haar random $(k-1) \times(k-1)$ unitary matrix
- Let a_{n} be the number of $1234 \cdots k$-avoiding permutations of length n
- Then $a_{n}=E\left(|\operatorname{tr}(U)|^{2} n\right)$.

So a_{0}, a_{1}, \ldots is a Stieltjes moment sequence.

Part 3: Excursions on graphs

PATHS ON GRAPHS

Theorem: [E.P., Guttmann 2019] Let Γ be a graph with vertex set V and edge set E, and let v_{0} be a fixed vertex. Let a_{n} be the number of walks from v_{0} to v_{0} in Γ of length n. Then a_{0}, a_{1}, \ldots is a Hamburger moment sequence.

Paths on graphs

Theorem: [E.P., Guttmann 2019] Let Γ be a graph with vertex set V and edge set E, and let v_{0} be a fixed vertex. Let a_{n} be the number of walks from v_{0} to v_{0} in Γ of length n. Then a_{0}, a_{1}, \ldots is a Hamburger moment sequence.

Proof of theorem:

- Consider a vector space with basis $\left\{p_{v}\right\}_{v \in V}$.
- Consider a linear operator C on this space defined by $C p_{v}=\sum_{(u, v) \in E} p_{u}$.
- Then C is self-adjoint and $a_{n}=\left\langle C^{n} p_{v_{0}}, p_{v_{0}}\right\rangle$. Hence a_{0}, a_{1}, \ldots is a Hamburger moment sequence.

Thank You!

OpEN PROBLEMS

Some possible Stieltjes moment sequences from OEIS:

- $\left(A v_{n}(\pi)\right)_{n \geq 0}$ for any permutation π
- Fishburn numbers
- A305703: Generalised Fibonacci numbers
- Perfect matchings avoiding certain patterns e.g., A005700 and A220910-A220915
- A319027: Number of preimages of 321-avoiding permutations under West's stack-sorting map

Open problem(s)

1324 AVOIDERS

For 1324-avoiding permutations the alpha sequence is:

Plot of α_{n} vs. n for the sequence $a_{n}=\left|\operatorname{Av}_{n}(1324)\right|$.

Question: Is this a Stieltjes moment sequence?

Generalised Fibonacci seQuences (A305573)

Definition: A generalised Fibonacci sequence is a sequence $f_{0}, f_{1}, f_{2}, \ldots$ satisfying $f_{j+1} \in\left\{f_{j}+f_{j-1},\left|f_{j}-f_{j-1}\right|\right\}$.
Definition: Let a_{n} be the number of generalised Fibonacci sequences with period $3 n$.
Question: Is a_{0}, a_{1}, \ldots a Stieltjes moment sequence?

Plot of α_{n} vs. n for the sequence a_{n}.

