Combinatorial Stieltjes moment sequences

Andrew Elvey Price

CNRS, Université de Tours

July 2023

Combinatorial Stieltjes moment sequences

Andrew Elvey Price

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

Equivalently: (if $a_0 = 1$) There is some random variable X taking non-negative values such that $a_n = E(X^n)$

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

Equivalently: (if $a_0 = 1$) There is some random variable X taking non-negative values such that $a_n = E(X^n)$ **Example 1:** If there is a density function $\mu(x)$, then

$$a_n = \int_0^\infty x^n \mu(x) dx$$

Example 2: If the measure is discrete then there are $c_j, d_j \ge 0$ satisfying

$$a_n = \sum_j c_j d_j^n$$

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$. **Equivalently:** ([Stieltjes, 1894]) There exist real numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$. **Equivalently:** ([Stieltjes, 1894]) There exist real numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Equivalently: ([Stieltjes, 1894]) The matrices

$$\begin{bmatrix} a_0 & a_1 & \dots \\ a_1 & a_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \text{ and } \begin{bmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \text{ are positive semi-definite.}$$

Definition: A *stieltjes moment sequence* is a sequence $a_0, a_1, a_2, ...$ such that:

There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$. **Equivalently:** ([Stieltjes, 1894]) There exist real numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Equivalently: ([Stieltjes, 1894]) The matrices

 $\begin{bmatrix} a_0 & a_1 & \dots \\ a_1 & a_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \text{ and } \begin{bmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \text{ are positive semi-definite.}$ **Question:** Which counting sequences are Stieltjes moment sequences?

Combinatorial Stieltjes moment sequences

PROPERTIES OF STIELTJES MOMENT SEQUENCES

If $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence with generating function A(t) then

- The ratios a_{n+1}/a_n are increasing (i.e., sequence is log-convex).
- The sequence $(a_n a_{n+2} a_{n+1}^2)_{n \ge 0}$ is also a Stieltjes moment sequence
- All singularities of A(t) lie in $\mathbb{R}_{\geq 0}$.
- We can produce "good" lower bounds on the growth rate

$$\mu = \lim_{n \to \infty} \sqrt[n]{a_n}.$$

Another property: Changing finitely many terms of a Stieltjes moment sequence growing at most exponentially never yields a different Stieltjes moment sequence with the same initial value

• Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

I just used your program for 1324-avoiders!

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

I just used your program for 1324-avoiders!

Conjecture: The sequence $Av_n(1324)$ is a Stieltjes moment sequence

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

I just used your program for 1324-avoiders!

Conjecture: The sequence $Av_n(1324)$ is a Stieltjes moment sequence **Conjollary:** the growth rate μ satisfies $\mu > 10.302$

- Tony Guttmann and I were studying some sequences, known to be a Stieltjes moments sequences, so I wrote a program to analyse initial terms of Stieltjes moment sequences
- Then Tony said:

I just used your program for 1324-avoiders!

Conjecture: The sequence $Av_n(1324)$ is a Stieltjes moment sequence **Conjollary:** the growth rate μ satisfies $\mu > 10.302$ Previous best: $\mu \in (10.27, 13.5)$ [Bevan, Brignall, EP, Pantone, 2020]

STORY TIME:

Two other (mostly) independent groups were working on similar ideas:

- [Blitvić, Stiengrímsson,2020]: permutations counted with 14 "natural" parameters form a moment sequence for any non-negative specialisation of the parameters. Includes avoiders of avoiders of patterns of length 3 (classical, consecutive and vincular)
- [Sokal, Zeng, 2022]: Independently same counting sequences and parameters, part of project analysing Hankel total-positivity [Sokal, Zeng, Zhu, Pétréole, E.P., Deb, Gilmore, Chen, ...]
 General belief: For any permutation π, the sequence | Av_n(π)| is a Stieltjes-moment sequence. [Blitvić, Kammoun, Stiengrímsson, Bostan, EP, Guttmann, Maillard, Clisby, Conway, Inoue]

TALK OUTLINE

- Part 1: Guessing Stieltjes-ness
 - Part 1a: Algorithm
 - Part 1b: Stieltjes moment sequences in OEIS
 - Part 1c: Examples
- **Part 2:** Proving Stieltjes-ness for exactly solved sequences (Stieltjes inversion formula)
- Part 3: Proving Stieltjes-ness for excursions on graphs

Part 1: Guessing Stieltjes-ness

Part 1a: Algorithm for guessing Stieltjes-ness

Computing continued fraction coefficients α_j

Definition: Let a_0, a_1, \ldots be a sequence with generating function

$$A(t) = a_0 + a_1 t + a_2 t^2 + \dots = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Recall: Sequence is Stieltjes \iff all $\alpha_j \ge 0$.

COMPUTING CONTINUED FRACTION COEFFICIENTS α_j

Definition: Let a_0, a_1, \ldots be a sequence with generating function

$$A(t) = a_0 + a_1 t + a_2 t^2 + \dots = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Recall: Sequence is Stieltjes \iff all $\alpha_j \ge 0$. **Assume:** a_0, a_1, \ldots, a_N known exactly. **Define:**

$$A_j(t) = \frac{\alpha_j}{1 - \frac{\alpha_{j+1}t}{1 - \cdots}}$$

Compute recursively, using

$$A_0(t) = A(t)$$
 and $A_j(t) = \frac{\alpha_j}{1 - tA_{j+1}(t)}$

If $\alpha_0, \ldots, \alpha_N > 0$, we guess the sequence is Stieltjes.

Computing continued fraction coefficients α_j

Recall: α_j 's and $A_j(t)$ determined by

$$A_0(t) = A(t)$$
 and $A_j(t) = \frac{\alpha_j}{1 - tA_{j+1}(t)}$

COMPUTING CONTINUED FRACTION COEFFICIENTS α_j

Recall: α_i 's and $A_i(t)$ determined by

$$A_0(t) = A(t)$$
 and $A_j(t) = \frac{\alpha_j}{1 - tA_{j+1}(t)}$

Euler-Viskovatov algorithm: [Sokal, 2022] Recursively define $B_i(t) = A_i(t)B_{i-1}(t)$ and $B_{-1}(t) = 1$. Then

$$\frac{B_{j}(t)}{B_{j-1}(t)} = \frac{\alpha_{j}}{1 - t\frac{B_{j+1}(t)}{B_{j}(t)}}$$

Expanding yields

$$B_j(t) - tB_{j+1}(t) = \alpha_j B_{j-1}(t).$$

Computing continued fraction coefficients α_j

Recall: α_j 's and $A_j(t)$ determined by

$$A_0(t) = A(t)$$
 and $A_j(t) = \frac{\alpha_j}{1 - tA_{j+1}(t)}$

Euler-Viskovatov algorithm: [Sokal, 2022] Recursively define $B_j(t) = A_j(t)B_{j-1}(t)$ and $B_{-1}(t) = 1$. Then

$$B_j(t) - tB_{j+1}(t) = \alpha_j B_{j-1}(t).$$

COMPUTING CONTINUED FRACTION COEFFICIENTS α_j

Recall: α_j 's and $A_j(t)$ determined by

$$A_0(t) = A(t)$$
 and $A_j(t) = \frac{\alpha_j}{1 - tA_{j+1}(t)}$

Euler-Viskovatov algorithm: [Sokal, 2022] Recursively define $B_j(t) = A_j(t)B_{j-1}(t)$ and $B_{-1}(t) = 1$. Then

$$B_j(t) - tB_{j+1}(t) = \alpha_j B_{j-1}(t).$$

Algorithm:

Initialise:

$$B_{-1}(t) = 1, \quad B_0(t) = a_0 + a_1 t + \dots + a_N t^N + O(t^{N+1}).$$

Recursive determine α_j , $B_{j+1}(t) + O(t^{N-j})$ using

$$\alpha_j = B_j(0)/B_{j-1}(0), \qquad B_{j+1}(t) = \frac{1}{t} \left(B_j(t) - \alpha_j B_{j-1}(t) \right).$$

Part 1b: Stieltjes moment sequences in OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS sequences with at least 15 terms (only considering terms a_n with $n \le 150$ and $a_n \le 10^{150}$).

We ran the Euler-Viskovatov algorithm on all 304698 OEIS sequences with at least 15 terms (only considering terms a_n with $n \le 150$ and $a_n \le 10^{150}$). For 6719 sequences the terms are consistent with being Stieltjes

We ran the Euler-Viskovatov algorithm on all 304698 OEIS sequences with at least 15 terms (only considering terms a_n with $n \le 150$ and $a_n \le 10^{150}$). For 6719 sequences the terms are consistent with being Stieltjes 6719 – ϵ **open questions:** Which of these sequences are really Stieltjes?

We ran the Euler-Viskovatov algorithm on all 304698 OEIS sequences with at least 15 terms (only considering terms a_n with $n \le 150$ and $a_n \le 10^{150}$).

For 6719 sequences the terms are consistent with being Stieltjes $6719 - \epsilon$ open questions: Which of these sequences are really Stieltjes?

Refined results:

- In 1667 such cases, one of the terms $\alpha_j = 0$, so the generating function A(t) is rational
- In 798 cases (including 328 rational cases), the coefficients α_j are all integers.
- For 7344 sequences the first 15 terms are consistent with being Stieltjes (625 of these not Stieltjes because of later terms)

Part 1b: Examples of (possibly) Stieltjes moment sequences in OEIS

EXAMPLE: 1234-AVOIDERS

Plot of α_n vs. *n* for the sequence $a_n = |\operatorname{Av}_n(1234)|$.

EXAMPLE: 1342-AVOIDERS

EXAMPLE: 1324-AVOIDERS

OTHER SEQUENCES STARTING 1,1,2,6,23

Of 69 OEIS sequences starting 1,1,2,6,23 there are 16 potential Stieltjes moment sequences

SEQUENCES STARTING 1,1,2,6,23

A110447: Av(<u>31</u>42)

SEQUENCES STARTING 1,1,2,6,23

A113227: Av(1234)

A125273: Av(1<u>42</u>3)

A098746: Av(4231, 42513)

A213090: Av(4231, 35142, 42513, 351624)

A263778: 120-avoiding inversion sequences

A187761: Maps $f : \{1, 2, ..., n\}$ satisfying $f(j) \le j$ and f(f(j)) = f(f(f(j))).

Plot of α_n vs. *n*.

Andrew Elvey Price

A007555: Standard paths in composition poset

Plot of α_n vs. *n*.

A352367: Something to do with chordal graphs

A030266: A(t) = 1 + tA(t)A(tA(t))

A125273:
$$A(t) = 1 + \frac{t}{1-t}A\left(\frac{t}{(1-t)^2}\right)$$

Plot of α_n vs. *n*.

Andrew Elvey Price

A193321:
$$A(t) = \sum_{n \ge 0} t^n \left(\prod_{k=1}^n \frac{1 - kt}{1 - 2kt} \right)$$

Plot of α_n vs. *n*.

Plot of α_n vs. *n*.

STIELTJES-NESS RESULTS FOR PERMUTATION CLASSES

Principal classes:

- Solved classes Av(1...m) and Av(1342) known to be counted by Stieltjes moment sequence [Rains, 1998], [Bostan,EP,Guttmann,Maillard, 2020]
- The sequence $Av_n(1324)$ seems to be Stieltjes (using 50 terms [Conway,Guttmann,Zinn-Justin,2018])
- The sequence Av_n(12534) seems to be Stieltjes (using 38 terms [Biers-Ariel,2019])
- For each (remaining) pattern π of length 5, the sequence Av_n(π) seems to be Stieltjes (using 23 to 27 terms [Clisby,Conway,Guttmann,Inoue,2022])

STIELTJES-NESS RESULTS FOR PERMUTATION CLASSES

Principal vincular classes

- Sometimes Stieltjes but not in general
- $Av(\underline{1234})$ not Stieltjes: in this case $\alpha_6 < 0$
- **Question:** Can one characterise vincular classes that are Stieltjes?

STIELTJES-NESS RESULTS FOR PERMUTATION CLASSES

Principal vincular classes

- Sometimes Stieltjes but not in general
- $Av(\underline{1234})$ not Stieltjes: in this case $\alpha_6 < 0$
- **Question:** Can one characterise vincular classes that are Stieltjes?

Classical finitely based classes

- Not generally Stieltjes !
- For π, τ of lengths 3 and 4, respectively, there are 9 Wilf classes for Av(π₁, π₂). Only 1 is Stieltjes: Av_n(123, 2143)
- For π, τ both of lengths 4, respectively, there are 38 Wilf classes for Av(π₁, π₂). Only 8 are (possibly) Stieltjes:
 - Av(4321,4123) has a rational generating function
 - The other 7 have algebraic generating functions
- **Question:** Can one characterise the permutations classes that are Stieltjes?

STIELTJES 2 BY 4 CLASSES

8 (possibly) Stieltjes Wilf classes for 2 by 4 patterns.

Andrew Elvey Price

STIELTJES 2 BY 4 CLASSES

8 (possibly) Stieltjes Wilf classes for 2 by 4 patterns. **Weird property:** Every case with non-trivial Wilf equivalence *is* (possibly) Stiletjes.

Part 2: Stieltjes inversion formula

[Bostan, EP, Guttmann, Maillard]

Combinatorial Stieltjes moment sequences

Andrew Elvey Price

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

When $|z| > \tau$, the generating function A(t) satisfies

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}} = \int_0^{\tau} \sum_{n=0}^{\infty} \frac{x^n}{z^{n+1}} \mu(x) dx = \int_0^{\tau} \frac{1}{z-x} \mu(x) dx$$

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

When $|z| > \tau$, the generating function A(t) satisfies

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \int_0^\tau \frac{1}{z-x}\mu(x)dx$$

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

When $|z| > \tau$, the generating function A(t) satisfies

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \int_0^\tau \frac{1}{z-x}\mu(x)dx =: F(z).$$

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

When $|z| > \tau$, the generating function A(t) satisfies

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \int_0^\tau \frac{1}{z-x}\mu(x)dx =: F(z).$$

Stieltjes inversion formula:

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right).$$

Let a_0, a_1, \ldots be a sequence with exponential growth rate (at most) τ . To check if sequence is Stieltjes:

• For
$$|z| > \tau$$
, define $F(z) = \frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}}$.

Let a_0, a_1, \ldots be a sequence with exponential growth rate (at most) τ . To check if sequence is Stieltjes:

• For
$$|z| > \tau$$
, define $F(z) = \frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}}$.

• If Stieltjes: F(z) extends analytically to $\mathbb{C} \setminus [0, \tau]$.

Let a_0, a_1, \ldots be a sequence with exponential growth rate (at most) τ . To check if sequence is Stieltjes:

- For $|z| > \tau$, define $F(z) = \frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}}$.
- If Stieltjes: F(z) extends analytically to $\mathbb{C} \setminus [0, \tau]$.
- For $x \in [0, \tau]$, define

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right).$$

Let a_0, a_1, \ldots be a sequence with exponential growth rate (at most) τ . To check if sequence is Stieltjes:

- For $|z| > \tau$, define $F(z) = \frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}}$.
- If Stieltjes: F(z) extends analytically to $\mathbb{C} \setminus [0, \tau]$.
- For $x \in [0, \tau]$, define

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right).$$

Generating function

$$C(t) = 1 + t + 2t^{2} + 5t^{2} + \dots = \frac{1 - \sqrt{1 - 4t}}{2t}.$$

Then

$$F(z) := \frac{1}{z}C\left(\frac{1}{z}\right) = \frac{1}{2}\left(1 - \sqrt{\frac{z-4}{z}}\right).$$

This is analytic on $\mathbb{C} \setminus [0,4]$, so the density function is

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right) = \frac{1}{2\pi} \sqrt{\frac{4 - x}{x}}.$$

Positive on [0, 4], so sequence is Stieltjes.

(Bóna, 1997): The generating function

$$A(t) := \sum_{n=0}^{\infty} Av_n (1342)t^n = \frac{1 + 20t - 8t^2 + (1 - 8t)^{3/2}}{2(1 + t)^3}$$

Then

$$F(z) := \frac{1}{z} A\left(\frac{1}{z}\right) = \frac{z^2 + 20z - 8 + \sqrt{z(z-8)^3}}{2(z+1)^3}.$$

This is analytic on $\mathbb{C} \setminus [0, 8]$, so the density function is

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right) = \frac{(8 - x)^{3/2} \sqrt{x}}{2\pi (1 + x)^3}$$

Positive for $x \in [0, 8]$, so sequence is Stieltjes.

Combinatorial Stieltjes moment sequences

Andrew Elvey Price

DENSITY FOR 1342-AVOIDING PERMUTATIONS

Density function for $Av_n(1342)$.

From known formula for 1234 avoiders, we have (for |z| large)

$$F(z) := \frac{1}{z}A\left(\frac{1}{z}\right) = \frac{z+5}{6} - \frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6} {}_{2}F_{1}\left(\left[-\frac{1}{4},\frac{3}{4}\right], [1], \frac{-64z^{3}}{(z-1)(z-9)^{3}}\right).$$

From known formula for 1234 avoiders, we have (for |z| large)

$$F(z) := \frac{1}{z}A\left(\frac{1}{z}\right) = \frac{z+5}{6} - \frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6} {}_{2}F_{1}\left(\left[-\frac{1}{4},\frac{3}{4}\right], [1], \frac{-64z^{3}}{(z-1)(z-9)^{3}}\right).$$

Expression not analytic on $\mathbb{C} \setminus [0,9]$.

Non-analytic points of F(z).

From known formula for 1234 avoiders, we have (for |z| large)

$$F(z) := \frac{1}{z}A\left(\frac{1}{z}\right) = \frac{z+5}{6} - \frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6} {}_{2}F_{1}\left(\left[-\frac{1}{4},\frac{3}{4}\right], [1], \frac{-64z^{3}}{(z-1)(z-9)^{3}}\right).$$

Expression not analytic on $\mathbb{C} \setminus [0,9]$.

Using different expressions for different regions yields an analytic function $\hat{F}(z)$ on $\mathbb{C} \setminus [0,9]$ equal to F(z) for *z* large.

From known formula for 1234 avoiders, we have (for |z| large)

$$F(z) := \frac{1}{z}A\left(\frac{1}{z}\right) = \frac{z+5}{6} - \frac{(z-1)^{\frac{1}{4}}(z-9)^{\frac{3}{4}}}{6} {}_{2}F_{1}\left(\left[-\frac{1}{4},\frac{3}{4}\right], [1], \frac{-64z^{3}}{(z-1)(z-9)^{3}}\right).$$

Expression not analytic on $\mathbb{C} \setminus [0, 9]$. Using different expressions for different regions yields an analytic function $\hat{F}(z)$ on $\mathbb{C} \setminus [0, 9]$ equal to F(z) for *z* large. By the Stieltjes inversion formula

$$\mu(x) = -\frac{1}{\pi} \Im(\hat{F}(z)) = -\frac{3}{\pi} \Im(F(z)) \qquad \text{for } x \in [1, 9],$$

$$\mu(x) = -\frac{1}{\pi} \Im(\hat{F}(z)) = \frac{3}{\pi} \Re(F(z)) \qquad \text{for } x \in [0, 1].$$

These are positive so the sequence is Stieltjes.

DENSITY FOR 1234-AVOIDING PERMUTATIONS

Density function for $Av_n(1234)$.

$1234 \cdots k$ -avoiders as a moment sequence

The following is a result of [Rains, 1998]:

- Let U be a Haar random $(k-1) \times (k-1)$ unitary matrix
- Let a_n be the number of $1234 \cdots k$ -avoiding permutations of length n
- Then $a_n = E(|tr(U)|^2 n)$.

So a_0, a_1, \ldots is a Stieltjes moment sequence.

Part 3: Excursions on graphs

PATHS ON GRAPHS

Theorem: [E.P., Guttmann 2019] Let Γ be a graph with vertex set V and edge set E, and let v_0 be a fixed vertex. Let a_n be the number of walks from v_0 to v_0 in Γ of length n. Then a_0, a_1, \ldots is a Hamburger moment sequence.
PATHS ON GRAPHS

Theorem: [E.P., Guttmann 2019] Let Γ be a graph with vertex set V and edge set E, and let v_0 be a fixed vertex. Let a_n be the number of walks from v_0 to v_0 in Γ of length n. Then a_0, a_1, \ldots is a Hamburger moment sequence.

Proof of theorem:

- Consider a vector space with basis $\{p_v\}_{v \in V}$.
- Consider a linear operator *C* on this space defined by

 $Cp_v = \sum_{(u,v)\in E} p_u.$

• Then *C* is self-adjoint and $a_n = \langle C^n p_{\nu_0}, p_{\nu_0} \rangle$. Hence a_0, a_1, \ldots is a Hamburger moment sequence.

Thank You!

Andrew Elvey Price

OPEN PROBLEMS

Some possible Stieltjes moment sequences from OEIS:

- $(Av_n(\pi))_{n\geq 0}$ for any permutation π
- Fishburn numbers
- A305703: Generalised Fibonacci numbers
- Perfect matchings avoiding certain patterns e.g., A005700 and A220910-A220915
- A319027: Number of preimages of 321-avoiding permutations under West's stack-sorting map

Open problem(s)

Andrew Elvey Price

Plot of α_n vs. *n* for the sequence $a_n = |\operatorname{Av}_n(1324)|$.

Question: Is this a Stieltjes moment sequence?

GENERALISED FIBONACCI SEQUENCES (A305573)

Definition: A generalised Fibonacci sequence is a sequence f_0, f_1, f_2, \ldots satisfying $f_{j+1} \in \{f_j + f_{j-1}, |f_j - f_{j-1}|\}$. **Definition:** Let a_n be the number of generalised Fibonacci sequences with period 3n.

Question: Is a_0, a_1, \ldots a Stieltjes moment sequence?

Plot of α_n vs. *n* for the sequence a_n .