

From two-stack sortable permutations to fighting fish.

Corentin Henriet, joint work with Luca Ferrari and Lapo Cioni.

July 3, 2023

Table of Contents

(1) Stack-sorting and fighting fish

(2) The bijection

(3) Perspectives

Sorting with a decreasing stack

Stack-sorting on permutations

The stack-sorting operator S is also defined recursively:

$$
\left\{\begin{array}{l}
\mathrm{S}(\varepsilon)=\varepsilon \\
\mathrm{S}\left(\sigma_{1} n \sigma_{2}\right)=\mathrm{S}\left(\sigma_{1}\right) \mathrm{S}\left(\sigma_{2}\right) n \text { for } \sigma=\sigma_{1} n \sigma_{2} \in \mathfrak{S}_{n}
\end{array}\right.
$$

A k-stack sortable permutation is a permutation σ such that $\mathrm{S}^{k}(\sigma)$ is the identity permutation.

$$
\begin{gathered}
\left|1 \mathcal{S S}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \\
\left|2 \mathcal{S S} \mathcal{S}_{n}\right|=\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}
\end{gathered}
$$

Parallelogram polyominoes

Convex polyomino: Finite connected union of unit squares with convex columns and rows. It is planar.
It is parallelogram if it has a South-West and a North-East cell.

$C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ parallelogram polyominoes of halfperimeter $n-1$.

A generalization of parallelogram polyominoes

Fighting fish are gluings of cells ($=45^{\circ}$ tilted unit squares) that can be obtained from the Head using a finite sequence of operations among the 3 presented below :

Size $=$ Number of lower free ($=$ not glued) edges minus 1 . Introduced in 2016 by Duchi, Guerrini, Rinaldi and Schaeffer to generalize parallelogram polyominoes.

Examples

They do not always fit in the plane :

Parallelogram polyominoes are fighting fish with one tail. Gluing order does not matter but the type of gluing does :

\neq

Fish, words and skeletons

Perform a counterclockwise tour of the boundary of the fish

Fish, words and skeletons

Perform a counterclockwise tour of the boundary of the fish

$N \rightarrow E N W$

Rotation of $45^{\circ} \rightarrow$ path on the square lattice starting and ending at $(0,0)$, confined to the quadrant $\{x, y \geq 0\}$.

Fish, words and skeletons

Rotation of $45^{\circ} \rightarrow$ path on the square lattice starting and ending at $(0,0)$, confined to the quadrant $\{x, y \geq 0\}$.

We can alternatively see a fish as its skeleton: a tree where each vertex carries two labels, E or N on one side and W or S on the other side.

Motivation: extend the aquarium of (direct) bijections

Table of Contents

(1) Stack-sorting and fighting fish

(2) The bijection
(3) Perspectives

From permutations to sorting trees

We construct a rooted plane tree using the grid representation of the permutation:

- We add the extra point $(0, n+1)$.
- We proceed from top to bottom by linking each point $(i, \sigma(i))$ to its parent with the rules:

From permutations to sorting trees

Fact: For $\sigma, \tau \in 2 \mathcal{S} \mathcal{S}_{n}, \mathrm{ST}(\sigma)=\mathrm{ST}(\tau) \Leftrightarrow \mathrm{S}(\sigma)=\mathrm{S}(\tau)$.

From permutations to labeled sorting trees

Label each element by:

- 0 if it is followed by a descent,
- $j>0$ if it is the last point of a descending run of length j.

From permutations to labeled sorting trees

Keep only the labeled rooted plane tree structure:

From permutations to labeled sorting trees

A labeled sorting tree is an element of $\mathcal{L S} \mathcal{T}_{n}=\operatorname{LST}\left(\mathfrak{S}_{n}\right)$.
Fact: The (restricted) map LST : $2 \mathcal{S S} \mathcal{S}_{n} \rightarrow \mathcal{L S} \mathcal{T}_{n}$ is bijective.

From labeled sorting trees to fighting fish

We perform a clockwise tour of the tree and decorate vertices by a E or a N at the first visit and by a W or a S at the last visit.

From labeled sorting trees to fighting fish

We have a companion stack which starts and ends up empty. A 0 -first visit yields a E, nothing happens on the stack.

From labeled sorting trees to fighting fish

From labeled sorting trees to fighting fish

From labeled sorting trees to fighting fish

From labeled sorting trees to fighting fish

A j-first visit with $j>0$ yields a N and we put a S in the stack, followed by $j-1 W$.

From labeled sorting trees to fighting fish

When we visit a vertex for the last time, we pop out one element of the stack that we assign to the vertex.

From labeled sorting trees to fighting fish

From labeled sorting trees to fighting fish

This procedure yields the skeleton of a fighting fish $\operatorname{FW}(T)$ from a tree $T \in \mathcal{L S T}$.

From labeled sorting trees to fighting fish

From labeled sorting trees to fighting fish

The total bijection

Theorem (Cioni, Ferrari, H. 2023+)

FW \circ LST is a bijection between two-stack sortable permutations and fighting fish. It is the direct version of Fang's recursive bijection (up to symmetry).
Parallelogram polyominoes \leftrightarrow One-stack sortable permutations. $\# E$ steps \leftrightarrow \#descents +1

Table of Contents

(1) Stack-sorting and fighting fish

(2) The bijection

(3) Perspectives

Mirroring fish

Conjugation of fish is the mirror involution wrt the x-axis. On skeletons, the tree is mirrored and letters are exchanged $E \leftrightarrow S$, $N \leftrightarrow W$.

Mirroring fish

How to describe the corresponding involutions on $\mathcal{L S T}$? On $2 \mathcal{S S}$?

A surprising symmetry on labeled sorting trees

Proposition

A labeled rooted plane tree T with n non-root vertices belongs to $\mathcal{L S} \mathcal{T}_{n}$ iff:

$$
\begin{gathered}
\sum_{v \in T} \lambda(v)=n+1 \\
\forall v \in T, \sum_{w \in \operatorname{anc}(v)}(2-\operatorname{deg}(w))-1 \geq \lambda(v) \\
\forall v \in T \backslash\{r\}, \quad \sum_{w \in \operatorname{sub}(v)}(\lambda(w)-1) \geq 1
\end{gathered}
$$

A surprising symmetry on labeled sorting trees

Proposition

A labeled rooted plane tree T with n non-root vertices belongs to $\mathcal{L S T}_{n}$ iff:

$$
\begin{gathered}
\sum_{v \in T} \lambda(v)=n+1 \\
\forall v \in T, \sum_{w \in \operatorname{anc}(v)}(2-\operatorname{deg}(w))-1 \geq \lambda(v) \\
\forall v \in T \backslash\{r\}, \quad \sum_{w \in \operatorname{sub}(v)}(\lambda(w)-1) \geq 1
\end{gathered}
$$

These three conditions do not depend on the order of the subtrees rooted at the children of v for any vertex v.

A surprising symmetry on labeled sorting trees

Hence $\mathcal{L S T}{ }_{n}$ is stable by the mirror symmetry:

A surprising symmetry on labeled sorting trees

It is very surprising and it would be nice to have a description of the induced involutions on $2 \mathcal{S S}{ }_{n}$ and $\mathcal{F F}{ }_{n}$.

The area statistic on fighting fish

The (shifted) area of a fighting fish is the number of cells in it (minus its size).

The area statistic on fighting fish

The (shifted) area of a fighting fish is the number of cells in it (minus its size).

What is the corresponding statistic on $2 \mathcal{S S}$? On $\mathcal{L S T}$?

The area statistic on fighting fish

We also conjecture the dinv statistic on fighting fish to be equidistributed with the shifted area.

The area statistic on fighting fish

We also conjecture the dinv statistic on fighting fish to be equidistributed with the shifted area.

Even more interesting, the joint symmetry seems to hold, i.e. $G_{n}(q, t)=G_{n}(t, q)$, where $G_{n}(q, t)=\sum_{F \in \mathcal{F} \mathcal{F}_{n}} q^{\operatorname{area}(F)-n} t^{\operatorname{dinv}(F)}$.

Extension to \mathfrak{S}_{n}

The maps ST and LST are defined for any permutation in \mathfrak{S}_{n}.

- For a given tree $T \in(\mathcal{L}) \mathcal{S} \mathcal{T}_{n}$, can we describe the set $\left\{\sigma \in \mathfrak{S}_{n} \mid(\mathrm{L}) \mathrm{ST}(\sigma)=T\right\}$? Enumerate it ?
- The sequence ($1,2,5,16,64,308, \ldots$) counting permutations giving rise to fighting fish of area 0 appears to count some plane labeled increasing binary trees avoiding some pattern (OEIS A131178). Is there more structure hidden ?

Thank you for your attention!

