On Permutation Classes Defined by Pin Sequences

Ben Jarvis
Based on joint work with Robert Brignall
3rd July 2023

Pin Sequences

Outline:

Pin Sequences

Outline:

- I will introduce a process for turning a 'binary' sequence into a permutation class

Pin Sequences

Outline:

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These pin classes come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)

Outline:

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These pin classes come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)
- Controlling various features of the defining binary sequence (eg., periodic/recurrent, complexity function, Sturmian, etc.) will allow us to control feautures of the resulting permutation class (eg., growth rate, length of longest oscillation, antichains, number of simple permutations, etc.)

Pin Sequences

Outline:

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These pin classes come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)
- Controlling various features of the defining binary sequence (eg., periodic/recurrent, complexity function, Sturmian, etc.) will allow us to control feautures of the resulting permutation class (eg., growth rate, length of longest oscillation, antichains, number of simple permutations, etc.)
- Thus we will end up with a very large example class of permutation classes with 'nice' properties, all of which we are able to enumerate...

Pin Sequences

Definition
A pin sequence is a word (finite or infinite) over the language

$$
\{1,2,3,4\}(\{1, r\}\{u, d\})^{*} \cup\{1,2,3,4\}(\{u, d\}\{1, r\})^{*}
$$

Examples:

- 3uruldldl
- 1ldlulurdlululululd
- 2(drul)* $=2$ druldruldrul. . .
- 1ulurulururulurururulur...

Pin Sequences

Definition

A pin sequence is a word (finite or infinite) over the language

$$
\{1,2,3,4\}(\{1, r\}\{u, d\})^{*} \cup\{1,2,3,4\}(\{u, d\}\{1, r\})^{*}
$$

Examples:

- 3uruldldl
- 1ldlulurdlululululd
- 2(drul)* $=2$ druldruldrul. . .
- 1ulurulururulurururulur...

A finite pin sequence can be converted into a permutation by the following procedure:

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word $2 l u r d l d$

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word $2 l u r d l d$

Pin Permutations

Constructing a permutation from the pin-word $2 l u r d l d$

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word $2 l u r d l d$

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

So the pin-word 2 lurdld constructs the permutation 3147526 (or the centred (that is, 2-by-2-gridded) permutation $\left.31475\right|_{3} 26$)

Pin Permutations

Constructing a permutation from the pin-word 2 lurdld

Note: this process is almost guaranteed to generate a simple permutation

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence 1 (ulur)*

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(\text { ulur })^{*}$

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(u l u r)^{*}$

Examples:

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(u l u r)^{*}$

Examples:

- $132 \in \mathcal{V}$

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(u l u r)^{*}$

Examples:

- $132 \in \mathcal{V}$
- $3241 \in \mathcal{V}$

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(u l u r)^{*}$

Examples:

- $132 \in \mathcal{V}$
- $3241 \in \mathcal{V}$
- $654123 \in \mathcal{V}$

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

The Class \mathcal{V}

Constructing a permutation class from the pin sequence $1(u l u r)^{*}$

Examples:

- $132 \in \mathcal{V}$
- $3241 \in \mathcal{V}$
- $654123 \in \mathcal{V}$
- $12543 \notin \mathcal{V}$

The pin class constructed from this pin sequence (called \mathcal{V}) consists of all of the permutations that can be found anywhere inside this (infinite) diagram.

Why Are Pin Classes Interesting?

Why Are Pin Classes Interesting?

1.) Structure of simple permutations: 'the primes of permutations'

- This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)

Why Are Pin Classes Interesting?

1.) Structure of simple permutations: 'the primes of permutations'

- This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)
2.) Connection with infinite antichains and well-quasi ordering
- Explains phase-transitions at $\kappa \approx 2.206$ and $\lambda \approx 2.357$ in growth-rate diagram:

Why Are Pin Classes Interesting?

1.) Structure of simple permutations: 'the primes of permutations'

- This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)
2.) Connection with infinite antichains and well-quasi ordering
- Explains phase-transitions at $\kappa \approx 2.206$ and $\lambda \approx 2.357$ in growth-rate diagram:

3.) We have a strategy for counting them...

A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

- Pin classes have a structure theorem in-built

A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent

A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent
- To describe this structure we will need to consider pin permutations as centred (that is, 2-by-2 gridded) permutations (this will affect the enumeration sequence of the permutation class, but crucially does not affect the growth rate)

A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent
- To describe this structure we will need to consider pin permutations as centred (that is, 2-by-2 gridded) permutations (this will affect the enumeration sequence of the permutation class, but crucially does not affect the growth rate)
- This is because we need to use the \boxplus-sum, a generalisation of the direct sum...

A Structure Theorem for Pin Classes

The \boxplus-sum

Given two centred (ie., 2-by-2-gridded) permutations π° and σ° their box sum, written $\pi^{\circ} \boxplus \sigma^{\circ}$, is obtained by replacing (or 'inflating') the ghost point at the centre of σ° with a copy of π°.

The \boxplus-sum of the centred permutations $\pi^{\circ}=\left(\left.231\right|_{2} 4\right)$ and $\sigma^{\circ}=\left(\left.413\right|_{4} 2\right)$ is $\left(\left.413675\right|_{6} 82\right)$; the ghost point at the centre of σ° is simply replaced ('inflated') by a copy of π°.

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a
\boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a
\boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a
\boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a
\boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a \boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

- p_{n} is the only point that intersects the bounding rectangle of $p_{1}, \ldots p_{n-1}$
- Hence when we remove it we create an interval $p_{1}, \ldots p_{n-1}$
- This decomposes the permutation into a \boxplus-sum of two shorter pin permutations

A Structure Theorem for Pin Classes

This process equips pin classes with an in-built structure theorem, which we will exploit later on:

Theorem: The Pin Decomposition

Let \mathcal{C}_{w}° be the pin class generated by pin sequence w. Then:

$$
\sigma^{\circ} \in \mathcal{C}_{w}^{\circ} \text { iff } \sigma^{\circ}=\pi_{w_{1}}^{\circ} \boxplus \pi_{w_{2}}^{\circ} \boxplus \ldots \pi_{w_{k}}^{\circ}
$$

where $w_{1}, w_{2}, \ldots w_{k}$ is a sequence of pin factors of w that occur in that order, in non-overlapping instances and separated from each other by at least one letter in w, and $\pi_{w_{i}}^{\circ}$ is the (centred) permutation generated from w_{i}.

A Structure Theorem for Pin Classes

This structure theorem is often awkward to apply due to the conditions on the pin factors w_{i}; it becomes much easier however, if we assume that w is a recurrent pin sequence - that is, every pin factor of w occurs infinitely often. The theorem then becomes:

Corollary: The Recurrent Case

Let \mathcal{C}_{w}° be the pin class generated by the recurrent pin sequence w. Then:

$$
\sigma^{\circ} \in \mathcal{C}_{w}^{\circ} \text { iff } \sigma^{\circ}=\pi_{w_{1}}^{\circ} \boxplus \pi_{w_{2}}^{\circ} \boxplus \ldots \pi_{w_{k}}^{\circ}
$$

where $w_{1}, w_{2}, \ldots w_{k}$ is a sequence of pin factors of w, and $\pi_{w_{i}}^{\circ}$ is the (centred) permutation generated from w_{i}. In particular, C_{w}° is \boxplus-closed.

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the \boxplus-sum of two consecutive pin permutations

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the $⿴$-sum of two consecutive pin permutations

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the \boxplus-sum of two consecutive pin permutations

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in
 this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the \boxplus-sum of two consecutive pin permutations

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

The Class \mathcal{V}

- Every $\pi \in \mathcal{V}$ is contained in

- As soon as we remove an interior point of a pin permutation it decomposes into the \boxplus-sum of two consecutive pin permutations
- Hence every $\pi \in \mathcal{V}$ ca be expressed (uniquely) in the form $\pi=\sigma_{1} \boxplus \sigma_{2} \boxplus \cdots \boxplus \sigma_{k}$, where the σ_{i} are \boxplus-indecomposables

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length $1: L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length $1: L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length $1: L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length $1: L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length 1 : $L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The pin class \mathcal{V}, defined by the pin sequence $1(u l u r)^{*}=1$ ulurulurulur...

Strategy: first we count the \boxplus indecomposables in \mathcal{V} :

- $2 \boxplus$-indecomposables of length $1: L_{1}=2$
- $2 \boxplus$-indecomposables of length 2: $L_{2}=2$
- $2 \boxplus$-indecomposables of length $3: L_{3}=2$
- 4 田-indecomposables of every length ≥ 4 : $L_{n}=4, n \geq 4$

Counting the pin-class \mathcal{V}

The Class \mathcal{V}

We begin by counting the \boxplus indecomposables in \mathcal{V} :

- $L_{1}=L_{2}=L_{3}=2$
- $L_{n}=4$ for all $n \geq 4$

We can store this information as a generating function:

$$
\begin{aligned}
g(z) & =2 z+2 z^{2}+2 z^{3}+4 z^{4}+4 z^{5}+4 z^{6}+\ldots \\
& =2 z+2 z^{2}+2 z^{3}+4 z^{4}\left(1+z+z^{2}+z^{3}+\ldots\right)
\end{aligned}
$$

Counting the pin－class \mathcal{V}

The Class \mathcal{V}

We begin by counting the $⿴ 囗 十$－ indecomposables in \mathcal{V} ：
－$L_{1}=L_{2}=L_{3}=2$
－$L_{n}=4$ for all $n \geq 4$

We can store this information as a generating function：

$$
g(z)=2 z+2 z^{2}+2 z^{3}+\frac{4 z^{4}}{1-z}=\frac{2 z\left(1+z^{3}\right)}{1-z}
$$

Counting the pin-class \mathcal{V}

- One \boxplus-indecomposable: g.f.

$$
g(z)=L_{1} z+L_{2} z^{2}+L_{3} z^{3}+\ldots
$$

Counting the pin-class \mathcal{V}

- One \boxplus-indecomposable: g.f. $g(z)=L_{1} z+L_{2} z^{2}+L_{3} z^{3}+\ldots$

- Two \boxplus-ind's: g.f. $g(z)^{2}$

Counting the pin-class \mathcal{V}

- One \boxplus-indecomposable: g.f. $g(z)=L_{1} z+L_{2} z^{2}+L_{3} z^{3}+\ldots$

- Two \boxplus-ind's: g.f. $g(z)^{2}$

- Three \boxplus-ind's: g.f. $g(z)^{3}$

Counting the pin-class \mathcal{V}

- One \boxplus-indecomposable: g.f. $g(z)=L_{1} z+L_{2} z^{2}+L_{3} z^{3}+\ldots$

- Two \boxplus-ind's: g.f. $g(z)^{2}$

- Three \boxplus-ind's: g.f. $g(z)^{3}$

So the generating function for the entire class \mathcal{V} is given by:

$$
\begin{aligned}
f(z) & =1+g(z)+g(z)^{2}+g(z)^{3}+g(z)^{4}+\ldots \\
& =\frac{1}{1-g(z)}=\frac{1}{1-\frac{2 z\left(1+z^{3}\right)}{1-z}}=\frac{1-z}{1-3 z-2 z^{4}}
\end{aligned}
$$

Counting the pin-class \mathcal{V}

Growth Rate of \mathcal{V}

\mathcal{V} has generating function

$$
f(z)=\frac{1-z}{1-3 z-2 z^{4}}
$$

Now we can use the generating function of \mathcal{V} to calculate its growth rate using Pringsheim's Theorem

Counting the pin-class \mathcal{V}

Growth Rate of \mathcal{V}

\mathcal{V} has generating function

$$
f(z)=\frac{1-z}{1-3 z-2 z^{4}}
$$

Growth rate $v \approx 3.069$

Now we can use the generating function of \mathcal{V} to calculate its growth rate using Pringsheim's Theorem

Moral of this example:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

Moral of this example:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as above example.

Moral of this example:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as above example.
2. Background theory: Understand \{pin sequence $\} \leftrightarrow\{$ pin permutation\} correspondence (focus on box-indecomposables)

Moral of this example:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as above example.
2. Background theory: Understand \{pin sequence $\} \leftrightarrow\{$ pin permutation $\}$ correspondence (focus on box-indecomposables)
3. Combinatorics on words: Count box-indecomposables by counting contiguous subsequences of the pin sequence.

Moral of this example:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as above example.
2. Background theory: Understand \{pin sequence $\} \leftrightarrow\{$ pin permutation $\}$ correspondence (focus on box-indecomposables)
3. Combinatorics on words: Count box-indecomposables by counting contiguous subsequences of the pin sequence.
4. Generating function theory: deduce g.f. for whole class from g.f. of box-indecomposables and investigate asymptotics through analysis

Applications of Pin Classes in Two Quadrants

Application 1: A Wealth of Classes

The pin class generated by the pin sequence $w=1$ (ululur)*. This has growth rate ≈ 3.25

- We now have a natural correspondence between binary sequences and pin classes in two quadrants (eg., 100100100 ...)
- This gives us a huge class of permutation classes which we can enumerate by determining the complexity of the sequence
- \rightarrow see Robert's talk (uncountably many permutation classes with distinct enumerations)

Applications of Pin Classes in Two Quadrants

Application 1: A Wealth of Classes

Ongoing work:

- Classify growth rates of periodic pin classes in two quadrants
- See how far this extends to recurrent classes more generally
- Non-recurrent pin classes...

The pin class generated by the pin sequence $w=1(\text { ululur })^{*}$. This has growth rate ≈ 3.25

Applications of Pin Classes in Two Quadrants

Application 2: Classes with Bounded Oscillations

- Very easy to control the maximum length of an oscillation in periodic pin classes
- Thus has applications to establishing growth rates of permutation classes with bounded oscillations

Possible Growth Rates of Permutation Classes

Applications of Pin Classes in Two Quadrants

Application 3: Well-Quasi-Ordering and Antichains

- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- Conjecture: \mathcal{V}^{+2} contains the 'second-smallest' antichain?

Applications of Pin Classes in Two Quadrants

Application 3: Well-Quasi-Ordering and Antichains

- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- Conjecture: \mathcal{V}^{+2} contains the 'second-smallest' antichain?

Applications of Pin Classes in Two Quadrants

Application 3: Well-Quasi-Ordering and Antichains

- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- Conjecture: \mathcal{V}^{+2} contains the 'second-smallest' antichain?

Further Directions

Pin Classes in Three and Four Quadrants

The pin class \mathcal{Y} generated by

$$
w=1(\text { uldlur })^{*} .
$$

- Once we move beyond two quadrants things get more difficult: the \boxplus-decomposition is no longer unique and the correspondence between contiguous pin factors and \boxplus-indecomposables breaks down
- Fortunately, these problems are somewhat pathological, and have now been fully classified
- This allows the process to be amended, though some control over the resulting pin class is lost

Non-Recurrent Pin Classes

The Liouville V, $\mathcal{V}_{\mathcal{L}}$

- A non-recurrent pin class that we can enumerate: its growth rate is ≈ 3.283
- Idea is to bound below by the box interior, $\mathcal{V}_{\mathcal{L}}{ }^{\boxplus}$, the largest \boxplus-closed class contained in $\mathcal{V}_{\mathcal{L}}$
- This is in fact 'enough' of the class to dominate its growth rate

Non-Recurrent Pin Classes

The Liouville V, $\mathcal{V}_{\mathcal{L}}$

- A non-recurrent pin class that we can enumerate: its growth rate is ≈ 3.283
- Idea is to bound below by the box interior, $\mathcal{V}_{\mathcal{L}}{ }^{\boxplus}$, the largest \boxplus-closed class contained in $\mathcal{V}_{\mathcal{L}}$
- This is in fact 'enough' of the class to dominate its growth rate

Open Problem: Is the growth rate of a non-recurrent pin class always equal to that of its \boxplus-interior?

- Classification of growth rates of (periodic, recurrent) pin permutation classes in two quadrants
- Is the antichain at \mathcal{V} the 'next' one after the antichain of oscillations?
- Applications to growth rates of permutation classes with bounded oscillations
- Explore pin classes in three and four quadrants
- Is the growth rate of a non-recurrent pin class always equal to that of its \boxplus-interior?

