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Pin Sequences

Outline:

• I will introduce a process for turning a ‘binary’ sequence into a
permutation class

• These pin classes come with an in-built structure theorem which
will make them easy to enumerate, in the sense of determining the
growth rate (at least if the defining binary sequence is recurrent...)

• Controlling various features of the defining binary sequence (eg.,
periodic/recurrent, complexity function, Sturmian, etc.) will
allow us to control feautures of the resulting permutation class
(eg., growth rate, length of longest oscillation, antichains, number
of simple permutations, etc.)

• Thus we will end up with a very large example class of
permutation classes with ‘nice’ properties, all of which we are able
to enumerate...
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Pin Sequences

Definition
A pin sequence is a word (finite or infinite) over the language

{1, 2, 3, 4}({l, r}{u, d})∗ ∪ {1, 2, 3, 4}({u, d}{l, r})∗

Examples:
• 3uruldldl
• 1ldlulurdlululululd
• 2(drul)∗ = 2druldruldrul. . .
• 1ulurulururulurururulur...

A finite pin sequence can be converted into a permutation by the
following procedure:
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Pin Permutations
Constructing a permutation from the pin-word 2lurdld

3 1 4 7 5 2 6

So the pin-word 2lurdld constructs the permutation 3147526
(or the centred (that is, 2-by-2-gridded) permutation 31475|326)
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Note: this process is almost guaranteed to generate a simple permutation
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The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:

• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V

• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V

• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V

• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



The Class V
Constructing a permutation class from the pin sequence 1(ulur)∗

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The pin class constructed from this pin sequence (called V) consists of
all of the permutations that can be found anywhere inside this
(infinite) diagram.



Why Are Pin Classes Interesting?

1.) Structure of simple permutations: ’the primes of permutations’
• This was the inital motivation for their study:

Brignall, Huczynska and Vatter (2008)

2.) Connection with infinite antichains and well-quasi ordering
• Explains phase-transitions at κ ≈ 2.206 and λ ≈ 2.357 in

growth-rate diagram:

0 1 ϕ 2 κ λ

Kaiser, Klazar, 2003 Vatter, ‘11 Bevan ‘18, Vatter ‘10

3.) We have a strategy for counting them...
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A Structure Theorem for Pin Classes

Most important feature of pin classes is that they are ‘easy’ to
enumerate (at least as long as the defining pin sequence is recurrent...):

• Pin classes have a structure theorem in-built
• This structure theorem is especially nice if the defining pin word

is recurrent
• To describe this structure we will need to consider pin

permutations as centred (that is, 2-by-2 gridded) permutations
(this will affect the enumeration sequence of the permutation
class, but crucially does not affect the growth rate)

• This is because we need to use the ⊞-sum, a generalisation of the
direct sum...
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A Structure Theorem for Pin Classes
The ⊞-sum
Given two centred (ie., 2-by-2-gridded) permutations π◦ and σ◦ their
box sum, written π◦ ⊞ σ◦, is obtained by replacing (or ’inflating’) the
ghost point at the centre of σ◦ with a copy of π◦.

⊞ =

The ⊞-sum of the centred permutations π◦ = (231 |2 4) and
σ◦ = (413 |4 2) is (413675 |6 82); the ghost point at the centre of σ◦ is
simply replaced (’inflated’) by a copy of π◦.



A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

• pn is the only point that
intersects the bounding
rectangle of p1, . . . pn−1

• Hence when we
remove it we create an
interval p1, . . . pn−1

• This decomposes the
permutation into a
⊞-sum of two shorter
pin permutations
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A Structure Theorem for Pin Classes

The pin permutation 1luldrdlurururuldr

• pn is the only point that
intersects the bounding
rectangle of p1, . . . pn−1

• Hence when we
remove it we create an
interval p1, . . . pn−1

• This decomposes the
permutation into a
⊞-sum of two shorter
pin permutations

1luldrdlurururuldr → 1luldrdl ⊞ 1ururuldr



A Structure Theorem for Pin Classes

This process equips pin classes with an in-built structure theorem,
which we will exploit later on:

Theorem: The Pin Decomposition
Let C◦

w be the pin class generated by pin sequence w. Then:

σ◦ ∈ C◦
w iff σ◦ = π◦

w1
⊞ π◦

w2
⊞ . . . π◦

wk

where w1, w2, . . . wk is a sequence of pin factors of w that occur in that order, in
non-overlapping instances and separated from each other by at least one letter in w,
and π◦

wi
is the (centred) permutation generated from wi.



A Structure Theorem for Pin Classes

This structure theorem is often awkward to apply due to the
conditions on the pin factors wi; it becomes much easier however, if we
assume that w is a recurrent pin sequence - that is, every pin factor of
w occurs infinitely often. The theorem then becomes:

Corollary: The Recurrent Case
Let C◦

w be the pin class generated by the recurrent pin sequence w. Then:

σ◦ ∈ C◦
w iff σ◦ = π◦

w1
⊞ π◦

w2
⊞ . . . π◦

wk

where w1, w2, . . . wk is a sequence of pin factors of w, and π◦
wi

is the
(centred) permutation generated from wi. In particular, C◦

w is ⊞-closed.



Counting the pin-class V
The pin class V , defined by the pin sequence 1(ulur)∗ = 1ulurulurulur...

The Class V
• Every π ∈ V is contained in

this (infinite) diagram

• As soon as we remove an
interior point of a pin
permutation it decomposes
into the ⊞-sum of two
consecutive pin permutations

• Hence every π ∈ V ca be
expressed (uniquely) in the
form π = σ1 ⊞ σ2 ⊞ · · ·⊞ σk,
where the σi are
⊞-indecomposables
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Counting the pin-class V

The pin class V , defined by the pin sequence 1(ulur)∗ = 1ulurulurulur...

The Class V
Strategy: first we count the ⊞-
indecomposables in V :

• 2 ⊞-indecomposables of
length 1: L1 = 2

• 2 ⊞-indecomposables of
length 2: L2 = 2

• 2 ⊞-indecomposables of
length 3: L3 = 2

• 4 ⊞-indecomposables of
every length ≥ 4:
Ln = 4, n ≥ 4
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Counting the pin-class V
The Class V

We begin by counting the ⊞-
indecomposables in V :

• L1 = L2 = L3 = 2
• Ln = 4 for all n ≥ 4

We can store this information as a generating function:

g(z) = 2z + 2z2 + 2z3 + 4z4 + 4z5 + 4z6 + ...

= 2z + 2z2 + 2z3 + 4z4(1 + z + z2 + z3 + ...)
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Counting the pin-class V
• One ⊞-indecomposable: g.f.

g(z) = L1z + L2z2 + L3z3 + ...

• Two ⊞-ind’s: g.f. g(z)2

• Three ⊞-ind’s: g.f. g(z)3

So the generating function for the entire class V is given by:

f (z) = 1 + g(z) + g(z)2 + g(z)3 + g(z)4 + ...

=
1

1 − g(z)
=

1

1 − 2z(1+z3)
1−z

=
1 − z

1 − 3z − 2z4
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Counting the pin-class V

Growth Rate of V

V has generating function

f (z) =
1 − z

1 − 3z − 2z4

Growth rate ν ≈ 3.069

Now we can use the generating function of V to calculate its growth
rate using Pringsheim’s Theorem
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Moral of this example:

The above process works for (recurrent) pin sequences more generally.
Reduces the problem of enumerating a pin class to a strategy:

Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as
above example.

2. Background theory: Understand
{pin sequence} ↔ {pin permutation} correspondence (focus on
box-indecomposables)

3. Combinatorics on words: Count box-indecomposables by
counting contiguous subsequences of the pin sequence.

4. Generating function theory: deduce g.f. for whole class from g.f.
of box-indecomposables and investigate asymptotics through
analysis
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Applications of Pin Classes in Two Quadrants

Application 1: A Wealth of Classes

The pin class generated by the
pin sequence w = 1(ululur)∗.
This has growth rate ≈ 3.25

• We now have a natural
correspondence between binary
sequences and pin classes in two
quadrants (eg., 100100100 . . . )

• This gives us a huge class of
permutation classes which we
can enumerate by determining
the complexity of the sequence

• → see Robert’s talk (uncountably
many permutation classes with
distinct enumerations)



Applications of Pin Classes in Two Quadrants

Application 1: A Wealth of Classes

The pin class generated by the
pin sequence w = 1(ululur)∗.
This has growth rate ≈ 3.25

Ongoing work:
• Classify growth rates of periodic

pin classes in two quadrants
• See how far this extends to

recurrent classes more generally
• Non-recurrent pin classes...



Applications of Pin Classes in Two Quadrants
Application 2: Classes with Bounded Oscillations

• Very easy to control the
maximum length of an oscillation
in periodic pin classes

• Thus has applications to
establishing growth rates of
permutation classes with
bounded oscillations

Possible Growth Rates of Permutation Classes

0 1 ϕ 2 κ λ

Kaiser, Klazar, 2003 Vatter, ‘11 Bevan ‘18, Vatter ‘10



Applications of Pin Classes in Two Quadrants

Application 3: Well-Quasi-Ordering and Antichains
• Pin sequences are a good way of producing antichains
• Thus pin classes have potential applications of

well-quasi-ordering and classifying antichains
• Conjecture: V+2 contains the ‘second-smallest’ antichain?

We can store this information as a generating function:

g(z) = z + z2 + 2z3 + 2z4 + 2z5 + ...

= z + z2 + 2z3(1 + z + z2 + z3 + ...)

= z + z2 +
2z3

1 − z
=

z + z3

1 − z
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Further Directions

Pin Classes in Three and Four Quadrants

The pin class Y generated by
w = 1(uldlur)∗.

• Once we move beyond two
quadrants things get more
difficult: the ⊞-decomposition is
no longer unique and the
correspondence between
contiguous pin factors and
⊞-indecomposables breaks down

• Fortunately, these problems are
somewhat pathological, and have
now been fully classified

• This allows the process to be
amended, though some control
over the resulting pin class is lost



Non-Recurrent Pin Classes

The Liouville V, VL

• A non-recurrent pin
class that we can
enumerate: its growth
rate is ≈ 3.283

• Idea is to bound below
by the box interior, V⊞

L ,
the largest ⊞-closed
class contained in VL

• This is in fact ‘enough’
of the class to dominate
its growth rate

Open Problem: Is the growth rate of a non-recurrent pin class always
equal to that of its ⊞-interior?
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Open Problems & Further Directions for Work

• Classification of growth rates of (periodic, recurrent) pin
permutation classes in two quadrants

• Is the antichain at V the ‘next’ one after the antichain of
oscillations?

• Applications to growth rates of permutation classes with bounded
oscillations

• Explore pin classes in three and four quadrants
• Is the growth rate of a non-recurrent pin class always equal to that

of its ⊞-interior?


