

On Permutation Classes Defined by Pin Sequences

Ben Jarvis

Based on joint work with Robert Brignall

3rd July 2023

Outline:

• I will introduce a process for turning a 'binary' sequence into a permutation class

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These *pin classes* come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These *pin classes* come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)
- Controlling various features of the defining binary sequence (eg., periodic/recurrent, complexity function, Sturmian, etc.) will allow us to control features of the resulting permutation class (eg., growth rate, length of longest oscillation, antichains, number of simple permutations, etc.)

- I will introduce a process for turning a 'binary' sequence into a permutation class
- These *pin classes* come with an in-built structure theorem which will make them easy to enumerate, in the sense of determining the growth rate (at least if the defining binary sequence is recurrent...)
- Controlling various features of the defining binary sequence (eg., periodic/recurrent, complexity function, Sturmian, etc.) will allow us to control features of the resulting permutation class (eg., growth rate, length of longest oscillation, antichains, number of simple permutations, etc.)
- Thus we will end up with a very large example class of permutation classes with 'nice' properties, all of which we are able to enumerate...

Definition

A pin sequence is a word (finite or infinite) over the language

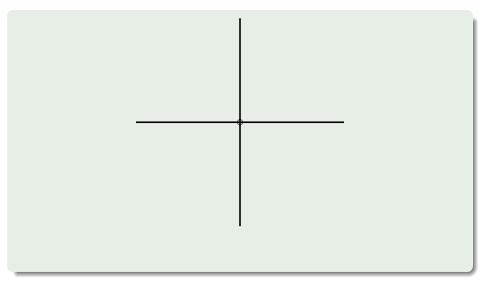
 $\{1,2,3,4\}(\{l,r\}\{u,d\})^*\cup\{1,2,3,4\}(\{u,d\}\{l,r\})^*$

Examples:

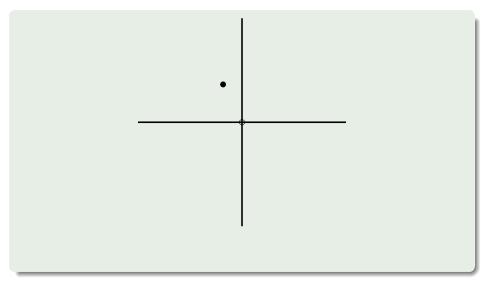
- 3uruldldl
- 1ldlulurdlululululd
- 2(drul)* = 2druldruldrul...
- 1ulurulururulururulur...

Definition

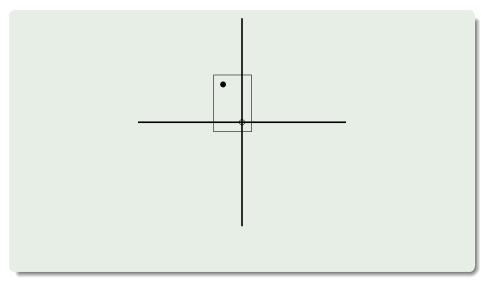
A pin sequence is a word (finite or infinite) over the language

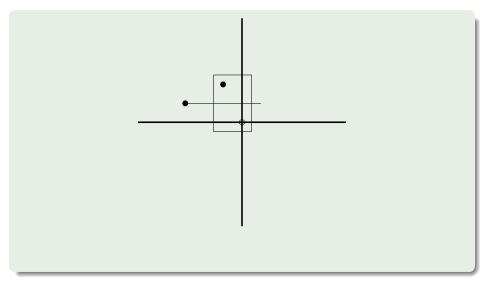

 $\{1,2,3,4\}(\{l,r\}\{u,d\})^*\cup\{1,2,3,4\}(\{u,d\}\{l,r\})^*$

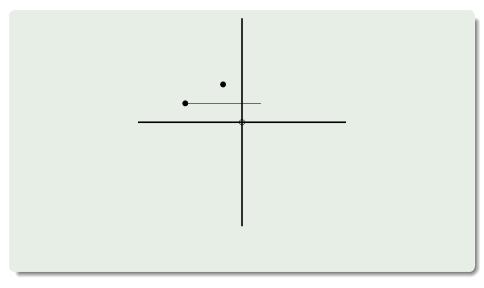
Examples:

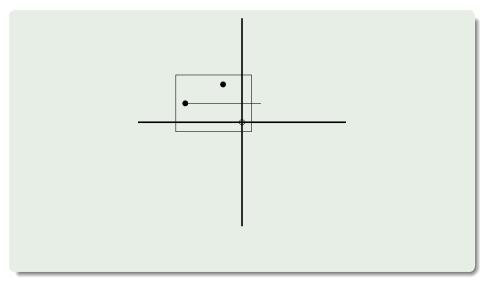

- 3uruldldl
- 1ldlulurdlululululd
- 2(drul)* = 2druldruldrul...
- 1ulurulururulururulur...

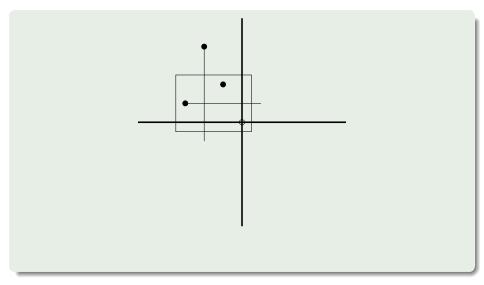
A finite pin sequence can be converted into a permutation by the following procedure:

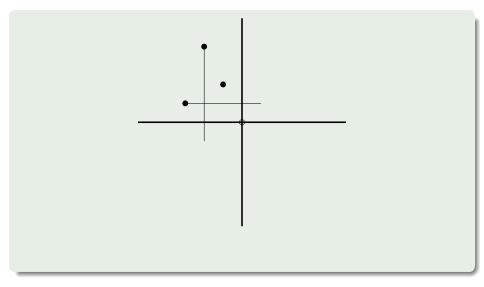


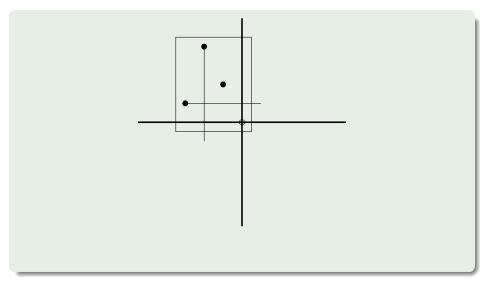


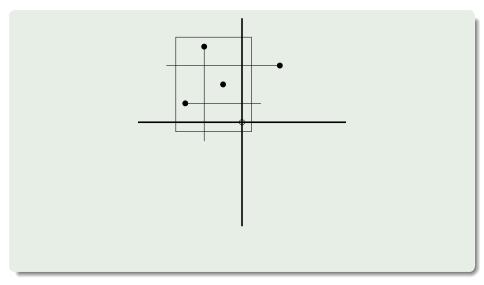


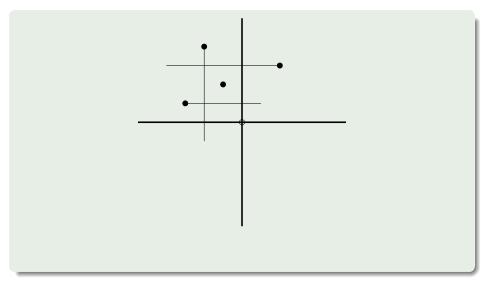


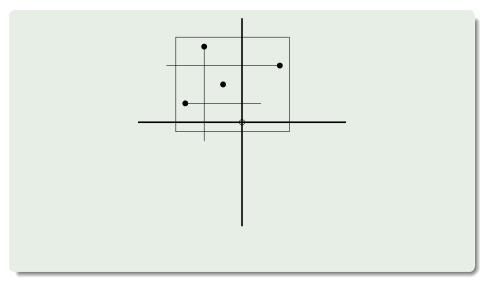


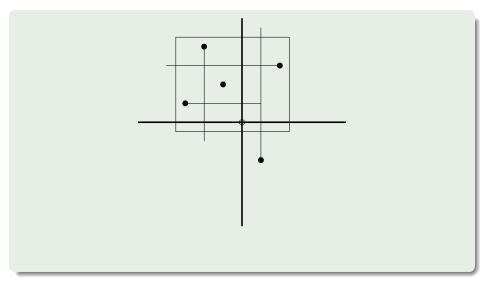


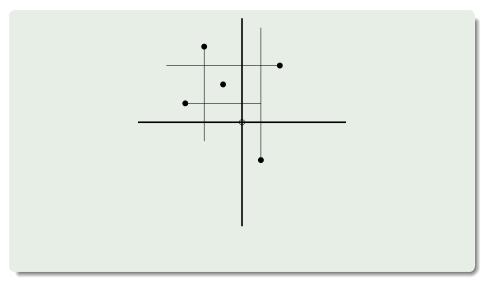


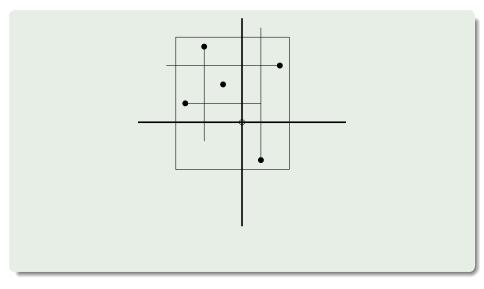


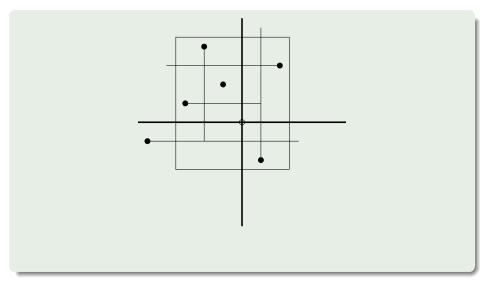


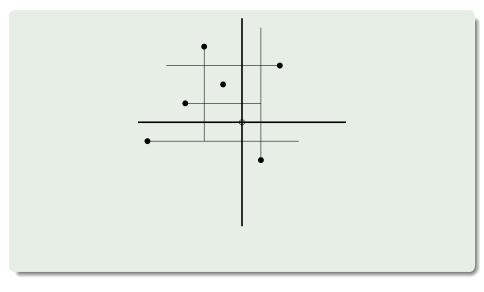


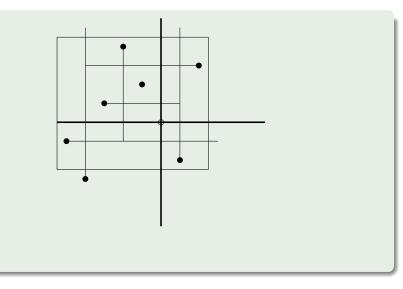


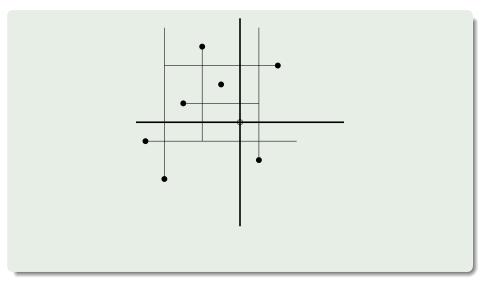


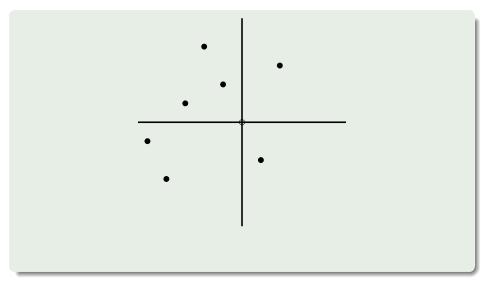


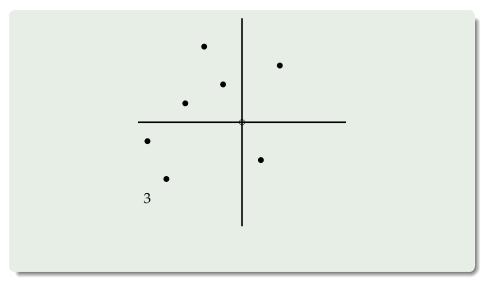


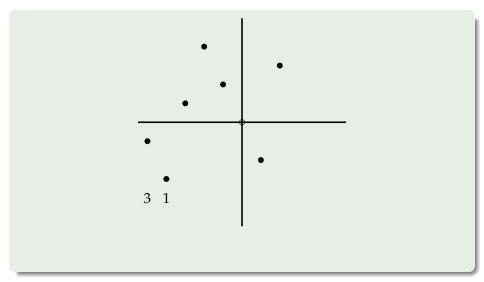


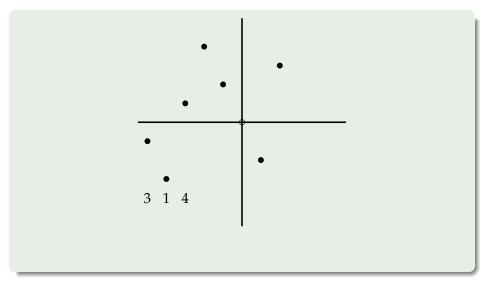


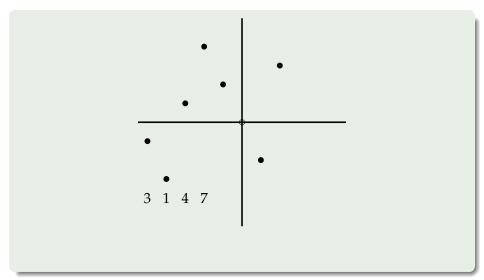


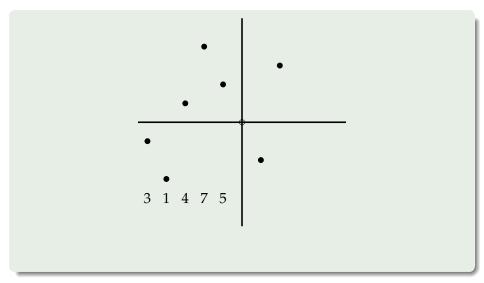


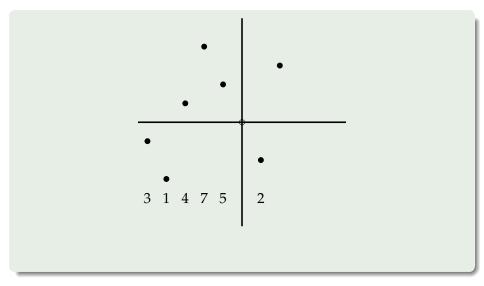


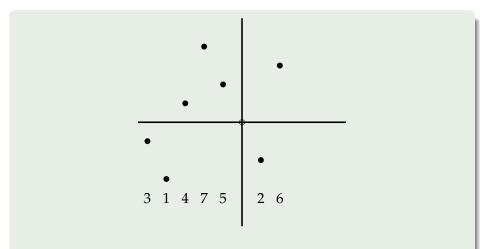


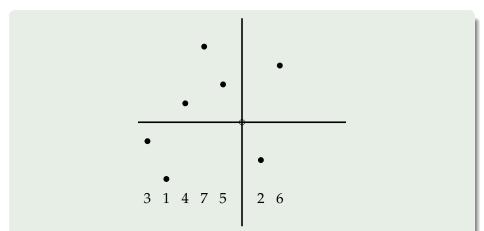






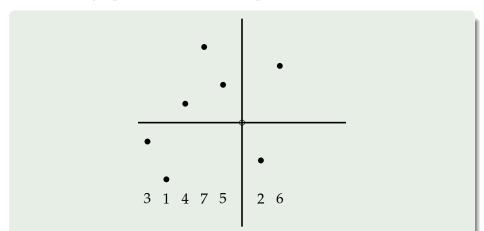






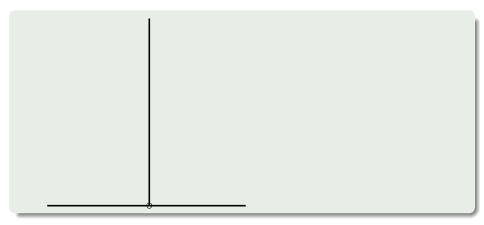
Pin Permutations

Constructing a permutation from the pin-word 2lurdld

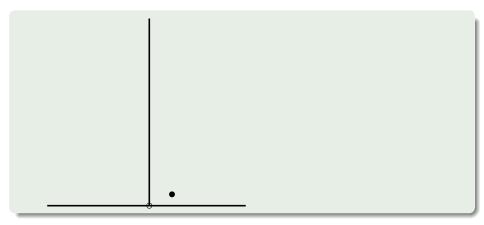


So the pin-word 2*lurdld* constructs the permutation 3147526 (or the *centred* (that is, 2-by-2-gridded) permutation $31475|_{3}26$)

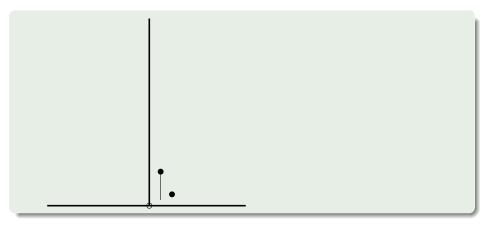
Pin Permutations

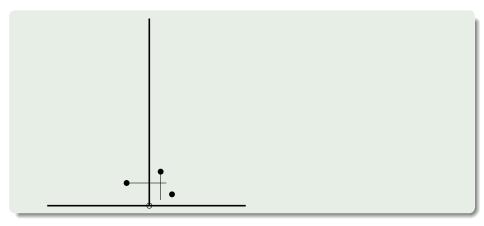


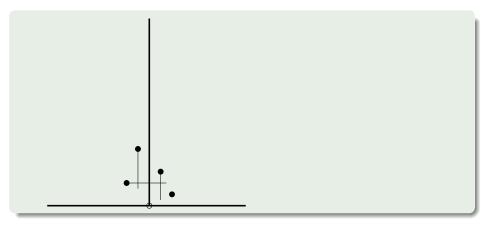
Constructing a permutation from the pin-word 2lurdld

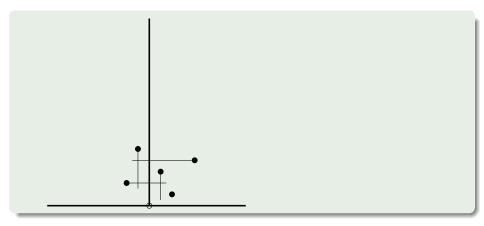


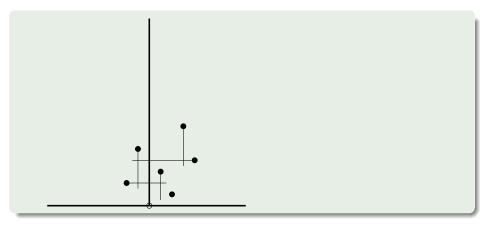
Note: this process is almost guaranteed to generate a simple permutation

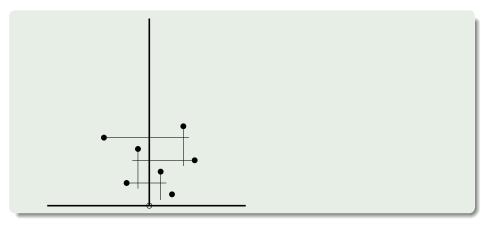


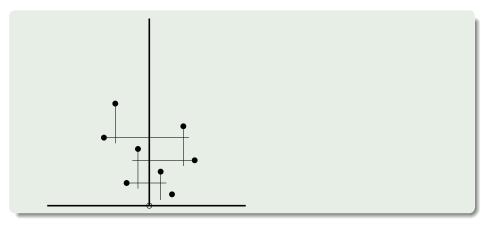


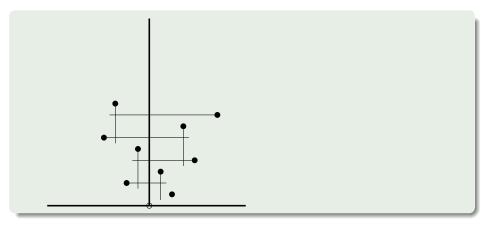


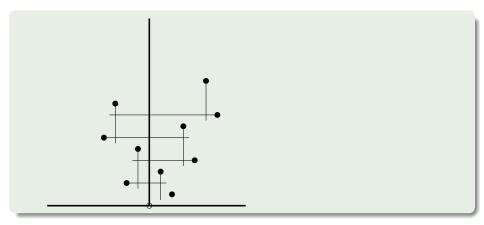


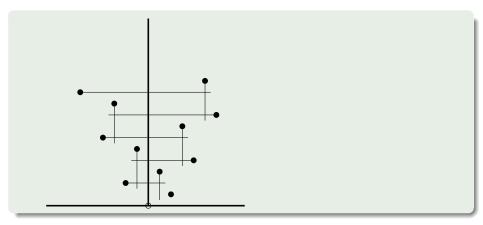


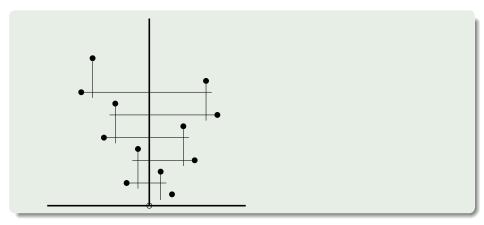


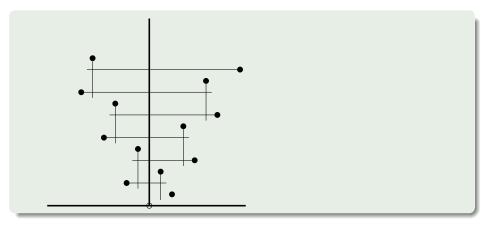


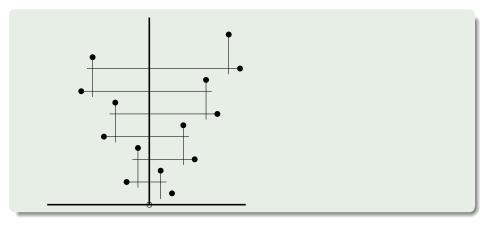


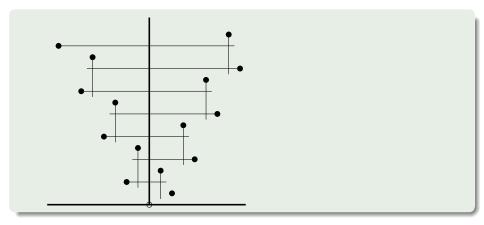


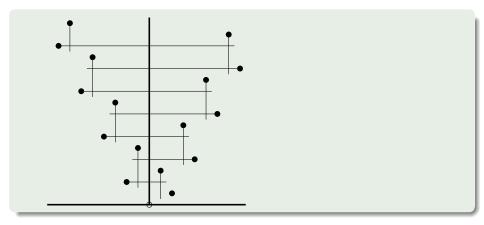


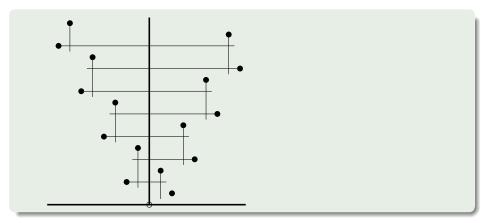


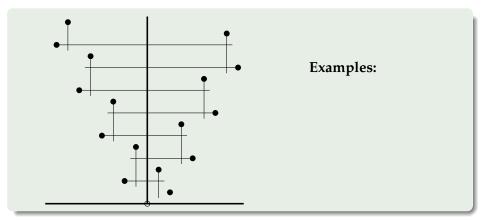




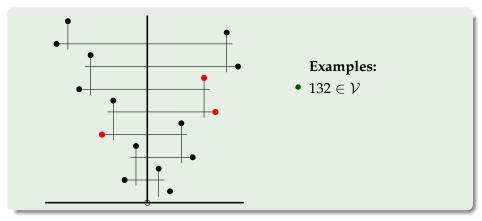




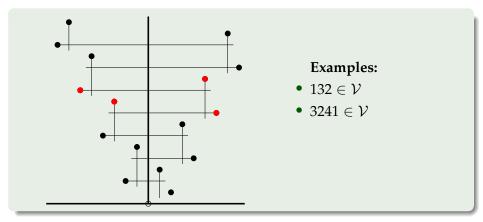




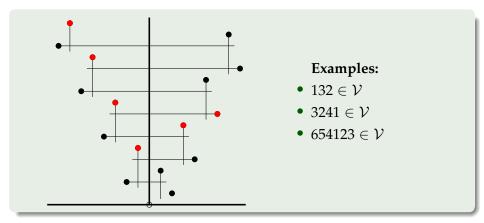
Constructing a permutation class from the pin sequence $1(ulur)^*$



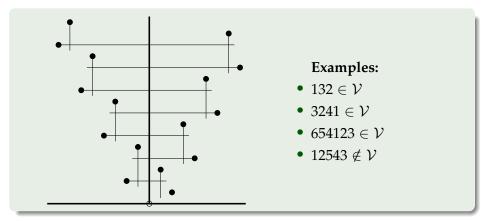
Constructing a permutation class from the pin sequence $1(ulur)^*$



Constructing a permutation class from the pin sequence $1(ulur)^*$



Constructing a permutation class from the pin sequence $1(ulur)^*$



Constructing a permutation class from the pin sequence $1(ulur)^*$

Constructing a permutation class from the pin sequence $1(ulur)^*$

- 1.) Structure of simple permutations: 'the primes of permutations'
 - This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)

- 1.) Structure of simple permutations: 'the primes of permutations'
 - This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)
- 2.) Connection with infinite antichains and well-quasi ordering
 - Explains phase-transitions at $\kappa \approx 2.206$ and $\lambda \approx 2.357$ in growth-rate diagram:

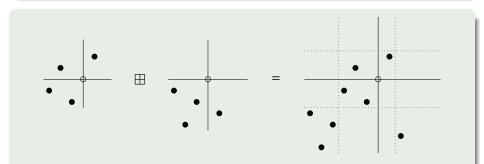
- 1.) Structure of simple permutations: 'the primes of permutations'
 - This was the inital motivation for their study: Brignall, Huczynska and Vatter (2008)
- 2.) Connection with infinite antichains and well-quasi ordering
 - Explains phase-transitions at $\kappa \approx 2.206$ and $\lambda \approx 2.357$ in growth-rate diagram:

3.) We have a strategy for counting them...

Most important feature of pin classes is that they are 'easy' to enumerate (at least as long as the defining pin sequence is recurrent...):

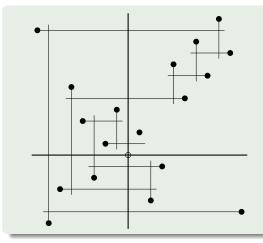
• Pin classes have a structure theorem in-built

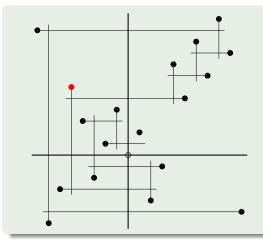
- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent

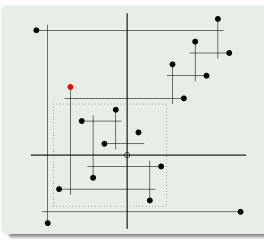

- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent
- To describe this structure we will need to consider pin permutations as *centred* (that is, 2-by-2 gridded) permutations (this will affect the enumeration sequence of the permutation class, but crucially does *not* affect the growth rate)

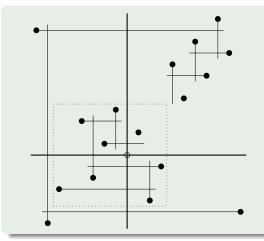
- Pin classes have a structure theorem in-built
- This structure theorem is especially nice if the defining pin word is recurrent
- To describe this structure we will need to consider pin permutations as *centred* (that is, 2-by-2 gridded) permutations (this will affect the enumeration sequence of the permutation class, but crucially does *not* affect the growth rate)
- This is because we need to use the ⊞-sum, a generalisation of the direct sum...

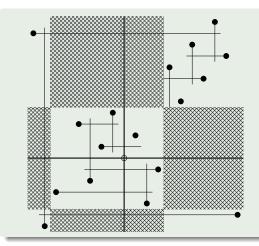
A Structure Theorem for Pin Classes The ⊞-sum


Given two centred (ie., 2-by-2-gridded) permutations π° and σ° their *box sum*, written $\pi^{\circ} \boxplus \sigma^{\circ}$, is obtained by replacing (or 'inflating') the ghost point at the centre of σ° with a copy of π° .

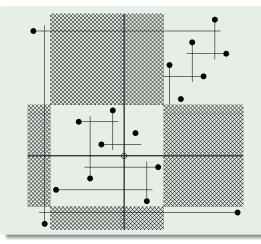

The \boxplus -sum of the centred permutations $\pi^{\circ} = (231 \mid_2 4)$ and $\sigma^{\circ} = (413 \mid_4 2)$ is (413675 $\mid_6 82$); the ghost point at the centre of σ° is simply replaced ('inflated') by a copy of π° .


The pin permutation 1*luldrdlurururuldr*


- *p_n* is the *only* point that intersects the bounding rectangle of *p*₁,...*p*_{*n*-1}
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations


- *p_n* is the *only* point that intersects the bounding rectangle of *p*₁,...*p*_{*n*-1}
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations

- *p_n* is the *only* point that intersects the bounding rectangle of *p*₁,...*p*_{*n*-1}
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations


- *p_n* is the *only* point that intersects the bounding rectangle of *p*₁,...*p*_{*n*-1}
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations

- p_n is the *only* point that intersects the bounding rectangle of $p_1, \dots p_{n-1}$
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations

The pin permutation 1luldrdlurururuldr

- p_n is the *only* point that intersects the bounding rectangle of $p_1, \dots p_{n-1}$
- Hence when we remove it we create an interval $p_1, \dots p_{n-1}$
- This decomposes the permutation into a ⊞-sum of two shorter pin permutations

$1 luldrdl\mathbf{u}$ rururuldr $\rightarrow 1 luldrdl \boxplus 1$ ururuldr

This process equips pin classes with an in-built structure theorem, which we will exploit later on:

Theorem: The Pin Decomposition

Let C_w° be the pin class generated by pin sequence *w*. Then:

$$\sigma^{\circ} \in \mathcal{C}_{w}^{\circ}$$
 iff $\sigma^{\circ} = \pi_{w_{1}}^{\circ} \boxplus \pi_{w_{2}}^{\circ} \boxplus \dots \pi_{w_{k}}^{\circ}$

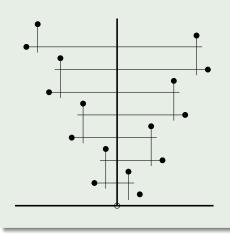
where $w_1, w_2, \ldots w_k$ is a sequence of pin factors of w that occur *in that order, in non-overlapping instances and separated from each other by at least one letter* in w, and $\pi_{w_i}^{\circ}$ is the (centred) permutation generated from w_i .

This structure theorem is often awkward to apply due to the conditions on the pin factors w_i ; it becomes much easier however, if we assume that w is a **recurrent** pin sequence - that is, every pin factor of w occurs infinitely often. The theorem then becomes:

Corollary: The Recurrent Case

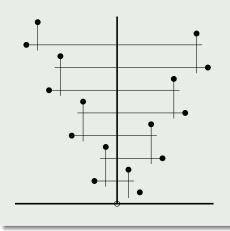
Let C_w° be the pin class generated by the *recurrent* pin sequence *w*. Then:

$$\sigma^{\circ} \in \mathcal{C}^{\circ}_{w} \text{ iff } \sigma^{\circ} = \pi^{\circ}_{w_{1}} \boxplus \pi^{\circ}_{w_{2}} \boxplus \dots \pi^{\circ}_{w_{k}}$$

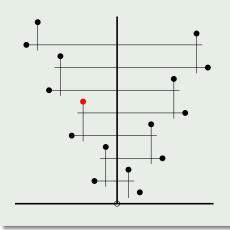

where $w_1, w_2, \ldots w_k$ is a sequence of pin factors of w, and $\pi_{w_i}^{\circ}$ is the (centred) permutation generated from w_i . In particular, C_w° is \boxplus -closed.

Counting the pin-class ${\cal V}$

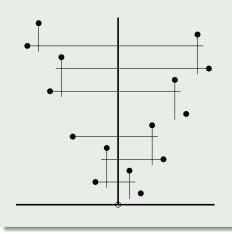
The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$


The Class ${\cal V}$

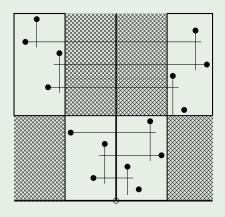
• Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram


The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

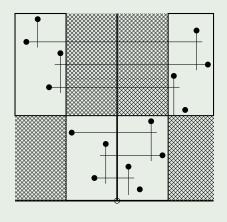
- Every π ∈ V is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the ⊞-sum of two consecutive pin permutations


The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

- Every π ∈ V is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the ⊞-sum of two consecutive pin permutations

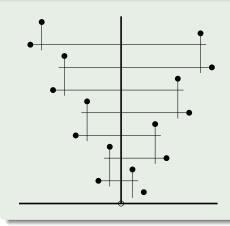

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

- Every π ∈ V is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the ⊞-sum of two consecutive pin permutations


The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

- Every $\pi \in \mathcal{V}$ is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the ⊞-sum of two consecutive pin permutations

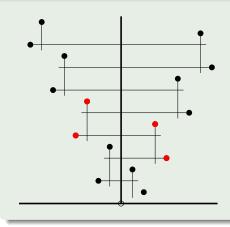
The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$



- Every π ∈ V is contained in this (infinite) diagram
- As soon as we remove an interior point of a pin permutation it decomposes into the ⊞-sum of two consecutive pin permutations
- Hence every $\pi \in \mathcal{V}$ ca be expressed (uniquely) in the form $\pi = \sigma_1 \boxplus \sigma_2 \boxplus \cdots \boxplus \sigma_k$, where the σ_i are \boxplus -indecomposables

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

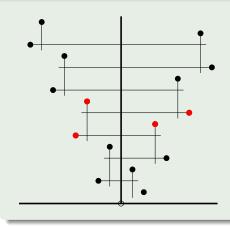
The Class \mathcal{V}



- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

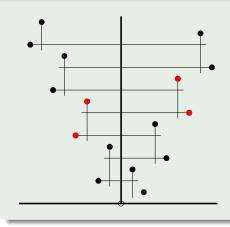
The Class \mathcal{V}



- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

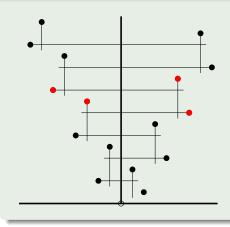
The Class \mathcal{V}



- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

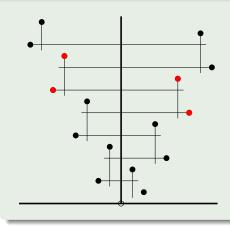
The Class \mathcal{V}



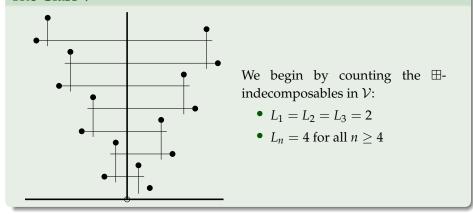
- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4

The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

The Class \mathcal{V}



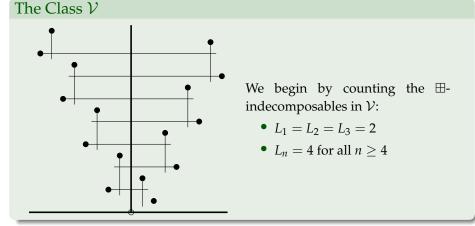
- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4


The pin class \mathcal{V} , defined by the pin sequence $1(ulur)^* = 1ulurulurulur...$

The Class \mathcal{V}

- 2 ⊞-indecomposables of length 1: L₁ = 2
- 2 ⊞-indecomposables of length 2: L₂ = 2
- 2 ⊞-indecomposables of length 3: L₃ = 2
- 4 ⊞-indecomposables of every length ≥ 4: L_n = 4, n > 4

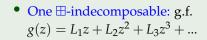
Counting the pin-class \mathcal{V} The Class \mathcal{V}



We can store this information as a generating function:

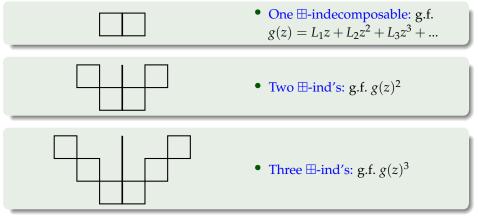
$$g(z) = 2z + 2z^{2} + 2z^{3} + 4z^{4} + 4z^{5} + 4z^{6} + \dots$$

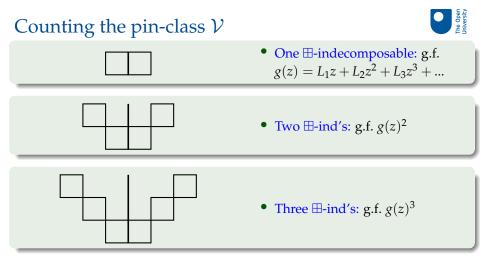
= $2z + 2z^{2} + 2z^{3} + 4z^{4}(1 + z + z^{2} + z^{3} + \dots)$



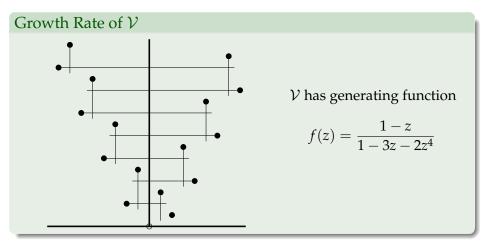
We can store this information as a generating function:

$$g(z) = 2z + 2z^{2} + 2z^{3} + \frac{4z^{4}}{1-z} = \frac{2z(1+z^{3})}{1-z}$$


Counting the pin-class ${\cal V}$



Counting the pin-class ${\cal V}$

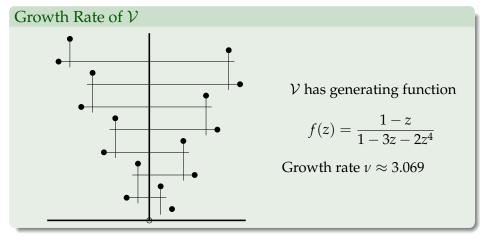


So the generating function for the entire class $\ensuremath{\mathcal{V}}$ is given by:

$$f(z) = 1 + g(z) + g(z)^{2} + g(z)^{3} + g(z)^{4} + \dots$$

= $\frac{1}{1 - g(z)} = \frac{1}{1 - \frac{2z(1 + z^{3})}{1 - z}} = \frac{1 - z}{1 - 3z - 2z^{4}}$

Counting the pin-class ${\cal V}$



Now we can use the generating function of \mathcal{V} to calculate its growth rate using Pringsheim's Theorem

Counting the pin-class ${\cal V}$

Now we can use the generating function of \mathcal{V} to calculate its growth rate using Pringsheim's Theorem

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

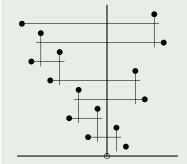
Enumerating (Recurrent) Pin Classes

1. Pin construction gives structure theorem: basically the same as above example.

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

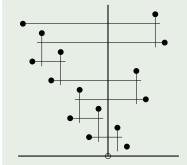
- 1. Pin construction gives structure theorem: basically the same as above example.
- Background theory: Understand {pin sequence} ↔ {pin permutation} correspondence (focus on box-indecomposables)

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:


- 1. Pin construction gives structure theorem: basically the same as above example.
- Background theory: Understand {pin sequence} ↔ {pin permutation} correspondence (focus on box-indecomposables)
- 3. Combinatorics on words: Count box-indecomposables by counting contiguous subsequences of the pin sequence.

The above process works for (recurrent) pin sequences more generally. Reduces the problem of enumerating a pin class to a strategy:

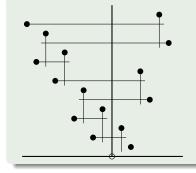
- 1. Pin construction gives structure theorem: basically the same as above example.
- Background theory: Understand {pin sequence} ↔ {pin permutation} correspondence (focus on box-indecomposables)
- 3. Combinatorics on words: Count box-indecomposables by counting contiguous subsequences of the pin sequence.
- 4. Generating function theory: deduce g.f. for whole class from g.f. of box-indecomposables and investigate asymptotics through analysis


Application 1: A Wealth of Classes

The pin class generated by the pin sequence $w = 1(ululur)^*$. This has growth rate ≈ 3.25

- We now have a natural correspondence between binary sequences and pin classes in two quadrants (eg., 100100100...)
- This gives us a huge class of permutation classes which we can enumerate by determining the complexity of the sequence
- → see Robert's talk (uncountably many permutation classes with distinct enumerations)

Application 1: A Wealth of Classes


The pin class generated by the pin sequence $w = 1(ululur)^*$. This has growth rate ≈ 3.25

Ongoing work:

- Classify growth rates of periodic pin classes in two quadrants
- See how far this extends to recurrent classes more generally
- Non-recurrent pin classes...

Applications of Pin Classes in Two Quadrants Application 2: Classes with Bounded Oscillations

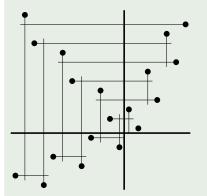
- Very easy to control the maximum length of an oscillation in periodic pin classes
- Thus has applications to establishing growth rates of permutation classes with bounded oscillations

Application 3: Well-Quasi-Ordering and Antichains

- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- *Conjecture:* V^{+2} contains the 'second-smallest' antichain?

Application 3: Well-Quasi-Ordering and Antichains

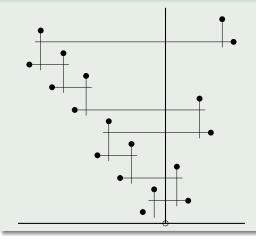
- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- *Conjecture:* V^{+2} contains the 'second-smallest' antichain?


Application 3: Well-Quasi-Ordering and Antichains

- Pin sequences are a good way of producing antichains
- Thus pin classes have potential applications of well-quasi-ordering and classifying antichains
- *Conjecture:* V^{+2} contains the 'second-smallest' antichain?

Further Directions

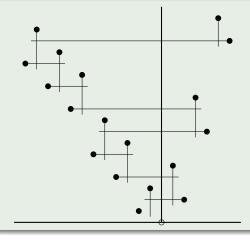
Pin Classes in Three and Four Quadrants


The pin class \mathcal{Y} generated by $w = 1(uldlur)^*$.

- Once we move beyond two quadrants things get more difficult: the ⊞-decomposition is no longer unique and the correspondence between contiguous pin factors and ⊞-indecomposables breaks down
- Fortunately, these problems are somewhat pathological, and have now been fully classified
- This allows the process to be amended, though some control over the resulting pin class is lost

Non-Recurrent Pin Classes

The Liouville V, $\mathcal{V}_{\mathcal{L}}$



- A non-recurrent pin class that we *can* enumerate: its growth rate is ≈ 3.283
- Idea is to bound below by the *box interior*, V[⊞]_L, the largest ⊞-closed class contained in V_L
- This is in fact 'enough' of the class to dominate its growth rate

Non-Recurrent Pin Classes

The Liouville V, $\mathcal{V}_{\mathcal{L}}$

- A non-recurrent pin class that we *can* enumerate: its growth rate is ≈ 3.283
- Idea is to bound below by the *box interior*, V[⊞]_L, the largest ⊞-closed class contained in V_L
- This is in fact 'enough' of the class to dominate its growth rate

Open Problem: Is the growth rate of a non-recurrent pin class always equal to that of its ⊞-interior?

- Classification of growth rates of (periodic, recurrent) pin permutation classes in two quadrants
- Is the antichain at \mathcal{V} the 'next' one after the antichain of oscillations?
- Applications to growth rates of permutation classes with bounded oscillations
- Explore pin classes in three and four quadrants
- Is the growth rate of a non-recurrent pin class always equal to that of its ⊞-interior?