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Generalized Fibonacci, k-bonacci
Initial terms: 0,...,0,0,1,
fn,1 = fn−1,1 + fn−2,1, Fibonacci
fn,2 = fn−1,2 + fn−2,2 + fn−3,2, Tribonacci
fn,3 = fn−1,3 + fn−2,3 + fn−3,3 + fn−4,3, Tetranacci
 Generalized Fibonacci numbers and associated matrices, 1960E. P. Miles Jr.
 Fibonacci-Tribonacci, 1963M. Feinberg
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Can we extendthe definition of fn,kto cover the case where k isnot an integer?



π-bonacci numbers?



• Knuth-Fibonacci, q-decreasing, and Sturmian words
• Generalization of the golden ratio, Φ(q), q ∈ R+
• Link to the Stern–Brocot tree and Minkowski’s ?(x)
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Knuth-Fibonacci words are Binary words containing no occurrencesof factor 1k . They are enumerated by generalized Fibonacci numbers.
• Avoiding 11 : Fibonacci, an = an−1 + an−2

• Avoiding 111 : Tribonacci, an = an−1 + an−2 + an−3

• ...
� The Art of Computer Programming, Volume 32nd ed., page 286, 1998, Donald Knuth
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Sturmian words
Write 1 if the line intersects a horizontal edge, 0 in case of a verticaledge, 01 in case of a corner.The resulting infinite word is s(q), where q ∈ R+ is a line’s slope.
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q-decreasing words
An n-length binary word is q-decreasing, q ∈ R+, if every of itslength maximal factors of the form 0a1b satisfies a = 0 or
q · a > b.

· · · 1
∣∣∣ 000 · · · · · · 00︸ ︷︷ ︸

a

111 · · · 11︸ ︷︷ ︸
b

∣∣∣ 0 · · ·

Let Wq,n be the set of such words of length n, Wq = ⋃
n∈N

Wq,n.

Ex.
111001010110001 is not 2-decreasing (2 · 1 ≯ 2)
01111 is not π-decreasing (π · 1 ≯ 4)
001111 is π-decreasing (π · 2 > 4)
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1-decreasing words, W1

In particular, in a 1-decreasing word every run of 0s isimmediately followed by a strictly shorter run of 1s.
· · · 1

∣∣∣ 000 · · · · · · 00︸ ︷︷ ︸
a

111 · · · 11︸ ︷︷ ︸
b

∣∣∣ 0 · · · a > b or a = 0

Let’s count! n 1 2 3 4 · · ·2 3 5 8 Fibonacci

01
001011

000001100110111

00000001001010001001110011101111
...

7



2-decreasing words, W2

· · · 1
∣∣∣ 000 · · · · · · 00︸ ︷︷ ︸

a

111 · · · 11︸ ︷︷ ︸
b

∣∣∣ 0 · · · where 2a > b or a = 0

Let’s count! n 1 2 3 4 · · ·2 4 7 13 Tribonacci

01
00011011

000001010100101110111

0000000100100011010001011000100110101100110111101111

...
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q-decreasing words literature
 A new paper in preparation with Sergey Dovgal...

� Fibonacci Cubes with Applications and Variations.Ömer Eğecioğlu, Sandi Klavžar and Michel MollardWorld Scientific, 2023
 Q-bonacci words and numbers. Sk, Fibonacci conference

https://kirgizov.link/talks/fiboconf.pdfThe Fibonacci Quarterly, 2022, https://arxiv.org/abs/2201.00782
� Combinatorial Gray codes-an updated survey, Torsten Mütze

https://arxiv.org/pdf/2202.01280.pdfto appear in Electronic Journal of Combinatorics
 Asymptotic bit frequency in Fibonacci words. BKV, GASCom 2022

https://kirgizov.link/talks/gascom2022.pdfPure Mathematics and Applications, 2022, https://arxiv.org/abs/2106.13550
 Gray codes for Fibonacci q-decreasing words.Jean-Luc Baril, Sk and Vincent VajnovszkiTheoretical Computer Science, 2022, https://arxiv.org/abs/2010.09505
 Fibonacci-run graphs I: Basic properties. Ömer Eğecioğlu and Vesna IršičDiscrete Applied Mathematics, 2021, https://arxiv.org/abs/2010.05518
 Qubonacci words. BKVPermutations patterns 2021, https://kirgizov.link/talks/qubonacci.pdf
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From Sturmian prefixes starting,
Traversing decreasing words,
Discover a beautiful function,
United in fractal of sherds!



From Sturmian to q-decreasing
E.g., slope is q = 1

φ = 2
1 + √

5Sturmian word s(1/φ) = 0100101001001010... (aka Fibonacci word)
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From Sturmian to q-decreasing. Natural case
E.g., slope is q = 2
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The picture is draw in collaboration with Sima and Fedia. 12
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Growth ratio



q-decreasing words. Growth ratio.
An n-length binary word is q-decreasing, q ∈ R+, if every of itslength maximal factors of the form 0a1b satisfies a = 0 or
q · a > b.

· · · 1
∣∣∣ 000 · · · · · · 00︸ ︷︷ ︸

a

111 · · · 11︸ ︷︷ ︸
b

∣∣∣ 0 · · ·

Let Wq,n be the set of such words of length n.Let Wq = ⋃
n∈N

Wq,n.
Φ(q) = lim

n→∞

|Wq,n+1|
|Wq,n| ?
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Consider the following function
Φ(q) = lim

n→∞

|Wq,n+1|
|Wq,n|

For q = 1, we get the golden ratio(W1,n is counted with the Fibonacci numbers).For q = 2, it is the tribonacci constant.For q = 5/3 ?For q = φ ?
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GeneRalization of the golden ratio
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Fractal



Stern, Brocot and Minkowski
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Minkowski’s question-mark function
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Intervals (k/(k + 1), 1] before rescaling
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Intervals (k/(k + 1), 1], Minkowski’s rescaling
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(k/(k + 1), 1], regions rescaled and superimposed
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Different families of regions have different limits
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Different families of regions have different limits
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Different families of regions rescaled and superimposed
(k/(k + 1), 1]
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(k/(1 + 2k), 1/2]
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Where ρ c
d

is the root of 1 − xc+d −
c−1∑
i=0

x1+i+⌊ id
c ⌋.

E.g. ρ1 = 1
φ = 2

1 + √
5

is the root of 1 − x2 − x .
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Any proofs ?
G.f. Wq(x) = 1(1 − x) (

1 −
∑∞

i=0 x
1+i+⌊ i

q⌋
) .

If q = c

d
∈ Q+ the g.f. is

W c
d
(x) = 1 − xc+d

(1 − x) (
1 − xc+d −

∑c−1
i=0 x1+i+⌊ id

c ⌋
) .

We represent polynomial denominators of generatingfunctions as certains subsets of points in Z2...
We use Pick’s Theorem and certain algebraico-analytico-combinatorial gymnastics to prove the results.
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Open question: whichjumps are higher?
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ArXiv preprint is coming soon!
We thank you so much
For staying in tune.



Minkowski’s scaling
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Minkowski’s scaling
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