## OCCURRENCES OF SUBSEQUENCES IN BINARY WORDS

## Krishna Menon and Anurag Singh

$$
c_{p}(w)
$$

$c_{p}(w)=$ Number of subsequences of $w$ that match $p$.

Example. For $p=10$ and $w=010010, c_{p}(w)=4$.

010010

$$
B_{n, p}(0)
$$

If $p$ is of length $l$,

$$
B_{n, p}(0)=\sum_{j=0}^{l-1}\binom{n}{j}
$$

Idea: How much of $p$ can we get?
Suppose $p=10010$
$00 \cdots 0$
$00 \cdots 0111 \cdots 1$
$00 \cdots 0111 \cdots 1011 \cdots 1$
$\left(1-p_{1}\right)^{i_{1}} p_{1}\left(1-p_{2}\right)^{i_{2}} p_{2} \cdots\left(1-p_{j}\right)^{i_{j}} p_{j}\left(1-p_{j+1}\right)^{i_{j+1}}$

$$
B_{n, p}(k)
$$

$$
B_{n, p}(k)=\#\left\{w \in\{0,1\}^{n} \mid c_{p}(w)=k\right\}
$$

Number of binary words of length $n$ that contain $p$ exactly $k$ times.

Example. If $p=1$, then

$$
B_{n, p}(k)=\binom{n}{k}
$$

Exercise. If $p$ is of length $l$ with $r_{i}$ runs of size $i$, then for any $k \geq 2$,

$$
B_{l+1, p}(k)=r_{k-1}
$$

$$
B_{n, p}(1)
$$

If $p$ is of length $l$ and has $r$ runs,

$$
B_{n, p}(1)=\binom{n-r+1}{l-r+1}
$$

Idea: Insert letters into $p$ without creating new occurrences.

Suppose $p=100011$

$$
ـ_{0}^{1} ـ^{0}{\underset{1}{1}}^{0}{\underset{1}{1}}^{0} ـ^{1}{\underset{0}{1}}^{1}
$$

One way to insert letters is

## Runs

Maximal subsequence of consecutive letters that are equal.

Example. Can encode word using run lengths and first letter.
10011100
$\downarrow$
$(1,2,3,2)_{1}$

$$
B_{n, p}(2)
$$

If $p$ has length $l$ and $r$ runs with $r_{1}$ of size 1 ,

$$
B_{n, p}(2)=r_{1}\binom{n-r}{l-r+1}
$$

Idea: Use runs of size 1 to make an extra occurrence. Insert letters without creating any more.
Suppose $p=110100$

110100

1100100
$\downarrow$


Let $p$ be a pattern of length $l$ with at most 3 runs, say $p=1^{i} 0^{j} 1^{k}$ where $i, k \geq 0, j \geq 1$.

## Maximum Occurrences

- $M_{n, p}=\max \left\{c_{p}(w) \mid w \in\{0,1\}^{n}\right\}$.
- $w \in\{0,1\}^{n}$ is $p$-optimal if $c_{p}(w)=M_{n, p}$.

1. We have $M_{n, p}=\max \left\{\left.\binom{a}{i}\binom{b}{j}\binom{c}{k} \right\rvert\, a+b+c=n\right\}$.
2. If $1^{a} 0^{b} 1^{c}$ is $p$-optimal, then so is at least one word in

$$
\left\{1^{a+1} 0^{b} 1^{c}, 1^{a} 0^{b+1} 1^{c}, 1^{a} 0^{b} 1^{c+1}\right\}
$$

3. The sequence $\left(M_{n, p}\right)_{n \geq 0}$ is log-concave.

## Internal Zeroes

We say $p$ has an internal zero at $n$ if there exist $0 \leq k_{1}<k_{2}<k_{3}$ such that

$$
B_{n, p}\left(k_{1}\right), B_{n, p}\left(k_{3}\right) \neq 0 \text { but } B_{n, p}\left(k_{2}\right)=0 .
$$

1. $p=10$ does not have any internal zeroes.
2. $p=101$ does not have an internal zero at $n$ for $n \geq 7$.
3. If $p$ isn't alternating, it has internal zeroes at all $n \geq l+3$.

## Future Directions

- Refine $B_{n, p}(k)$ by keeping track of statistics. Number of 1 s , number of runs etc.
- We have used runs to study $B_{n, p}(k)$.

Are there better ways to do this?

## Conjecture

For two patterns $p, q$, we have

$$
B_{n, p}(k)=B_{n, q}(k) \text { for all } n, k \geq 0
$$

if and only if $p=q, q^{r}, q^{c}$, or $q^{r c}$.

Patterns of length at most $13 \checkmark$
$\left.\begin{array}{|c}\begin{array}{c}\text { Conjecture } \\ \text { For two patterns } p, q \text {, we have }\end{array} \\ B_{n, p}(k)=B_{n, q}(k) \text { for all } n, k \geq 0 \\ \text { Patterns of length } \\ \text { at most } 13 \checkmark\end{array}\right]$

Expressions for $B_{n, p}(3)$ and $B_{n, p}(4)$ in [2]. Formulas for $B_{n, p}(k)$ for $k \geq 5$ ? Interesting case: Alternating words.

