## GRASSMANNIAN PERMUTATIONS AVOIDING IDENTITY

Krishna Menon and Anurag Singh

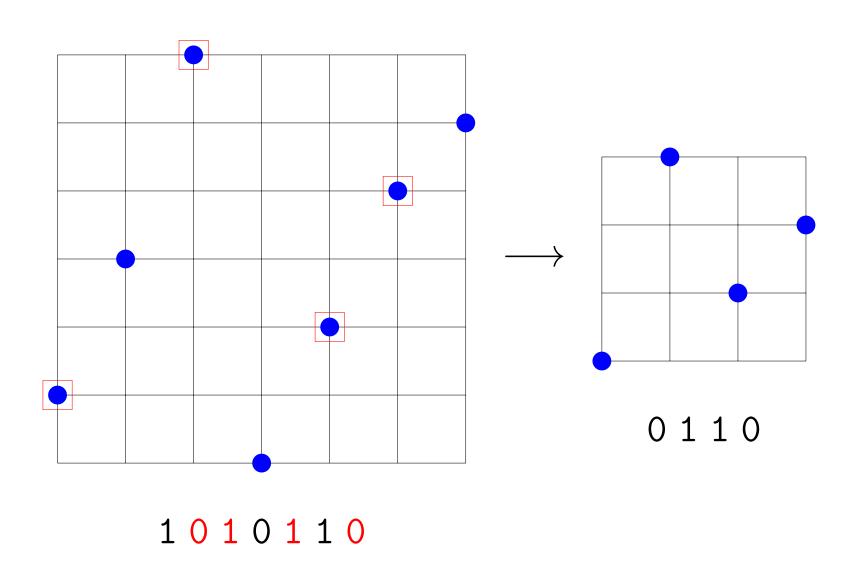
# **Binary words**

Grassmannian permutations of size *m*:

$$G_m = \{ \pi \in S_m \mid \text{des}(\pi) = 0 \text{ or } 1 \}.$$

Associate G(w) to a binary word w as follows:

- Set  $A = \{i \in [m] \mid w_i = 0\}$ .
- First #A terms of G(w): A in increasing order.
- Remaining terms:  $[m] \setminus A$  in increasing order.



Bijection apart from

$$G(0^i 1^{m-j}) = \mathrm{id}_m$$
 for all  $j \in [0, m]$ .

Patterns in G(w) are

$$\{G(w') \mid w' \text{ subsequence of } w\}.$$

**Focus:** Permutations in  $\mathcal{G}_m$  avoiding  $\mathrm{id}_k$ .

 $\mathcal{B}(k,m) = \text{Set of binary words of length } m$ 

avoiding  $0^j 1^{k-j}$  for all  $j \in [0, k]$ .

Set  $B(k,m) = \#\mathcal{B}(k,m)$ .

### **Count using Dyck Paths**

**Example.** [1, Prop. 3.1] For any  $k \geq 2$ , we have

$$B(k, 2k - 2) = C_{k-1}.$$

For words in  $\mathcal{B}(k, 2k - 2)$ , #0s = #1s = k - 1.

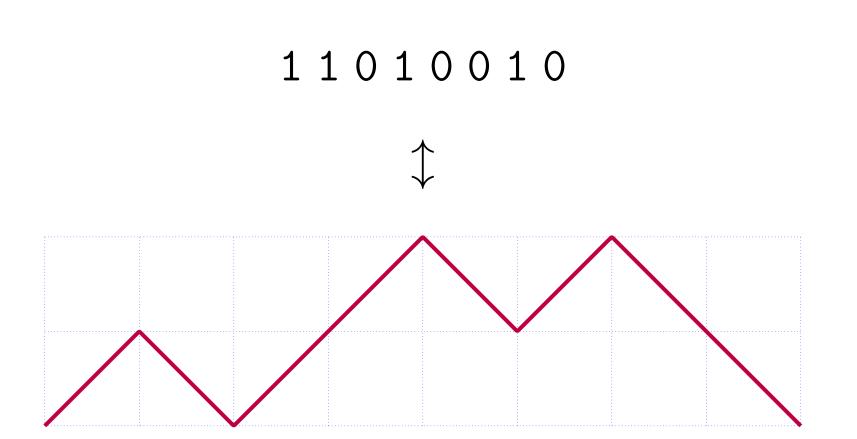
$$1^{a_{k-1}}01^{a_{k-2}}0\cdots 1^{a_2}01^{a_1}0$$

$$\updownarrow UD^{a_1}UD^{a_2}\cdots UD^{a_{k-1}}$$

where 
$$\sum_{i=1}^{i} a_r \leq i$$
 for all  $i \in [k]$ .

**Theorem.** For any  $k, m \ge 1$ , we have

$$B(k,m) = \sum_{a=1}^{2k-m-1} \left[ \binom{m}{k-a} - \binom{m}{k} \right].$$



 $\mathcal{B}(k,m) \leftrightarrow \mathsf{Dyck}$  paths of semilength (k+1) with sum of heights of first and last peak (2k - m).

Words in 
$$\mathcal{B}(k,m)$$
 with  $\#\mathtt{0s}=j\in[0,k-1]$ :

$$1^{a_j}01^{a_{j-1}}0\cdots 1^{a_2}01^{a_1}01^{a_0}$$

$$\downarrow^{k-j} D^{a_0+1} I I D^{a_1} \dots I I D^{a_{j-1}} I I D^{a_j} I I D^{k+j-m}$$

$$U^{k-j}D^{a_0+1}UD^{a_1}\cdots UD^{a_{j-1}}UD^{a_j}UD^{k+j-m}$$
 where  $\sum\limits_{r=0}^ia_r<(k-j)+i$  for all  $i\in[0,j]$ .

**Lemma.** The number of Dyck paths of semilength n+1 with first peak of height a and last peak of height b is

$$\binom{2n-a-b}{n-a} - \binom{2n-a-b}{n}.$$

### **Count using Recurrences**

**Theorem.** [1, Conjecture by Michael Weiner] For any  $k, m \geq 1$ , we have

$$B(k,m) = \sum_{j=1}^{2k-m} (-1)^{j-1} j \cdot {2k-m-j \choose j} \cdot C_{k-j}.$$

Both sides satisfy same initial conditions and recurrence

$$B(k,m) = B(k-1,m-1) + B(k,m-1) - T(k,m-k)$$

T(a,b)=# Dyck paths of semilength a with last peak of height a-b.

Suppose  $w=w_1w_2\cdots w_m$  and  $w'=w_1w_2\cdots w_{m-1}$ .

• If 
$$w_m = 1$$
,  $w \in \mathcal{B}(k, m) \Leftrightarrow w' \in \mathcal{B}(k-1, m-1)$ .

• If 
$$w_m = 0$$
,  $w \in \mathcal{B}(k, m) \Leftrightarrow w' \in \mathcal{B}(k, m - 1)$  and  $\#0s \neq k - 1$ .

Words in  $\mathcal{B}(k, m-1)$  with #0s = k-1:

$$egin{array}{c} egin{array}{c} egin{array}$$

Corollary. The number of Dyck paths of semilength n with sum of heights of first and last peaks equal to s is

$$\sum_{j=1}^{\lfloor s/2\rfloor} (-1)^{j-1} j \binom{s-j}{j} C_{n-1-j}.$$
 Direct proof?

### Question

For any  $r \geq 1$ , count the permutations in  $\mathcal{G}_m$  with exactly roccurrences of  $id_k$ .

# **Parity Restrictions**

If  $w = 1^{a_k} 0 1^{a_{k-1}} 0 \cdots 1^{a_1} 0 1^{a_0}$ , then  $inv(G(w)) = \sum_i i \cdot a_i$ .

Hence, G(w) is odd if and only if number of odd terms in  $(a_1, a_3, a_5, \ldots)$  is odd.

**Definition.** For  $k, m \geq 1$ ,

$$O(k, m) = \#\{w \in \mathcal{B}(k, m) \mid G(w) \text{ is odd}\}.$$

**Proposition.** For any  $k \geq 2$ , we have

$$O(k, 2k - 2) = \frac{C_{k-1} + C_{(k-2)/2}}{2}.$$

 $(a_1, a_2, a_3, a_4) = (1, 0, 1, 2)$  $(a_1, a_2, a_3, a_4) = (1 - 1, 0 + 1, 1, 2) = (0, 1, 1, 2)$ 

- Parity reversing involution on Dyck paths that have a peak or valley at even height.
- Permutation corresponding to path with all peaks and valleys at odd height is odd.
- Number of Dyck paths of semilength n with all peaks and valleys at odd height is  $C_{(n-1)/2}$ .

Similar ideas work for general O(k, m) [2].

#### References

**Contact Information** Anurag Singh anurags@iitbhilai.ac.in



[1] J. B. Gil and J. A. Tomasko. Restricted grassmannian permutations. *Enumer. Combin. Appl.*, 2(S4PP6), 2022. [2] K. Menon and A. Singh. Grassmannian permutations avoiding identity. arXiv preprint arXiv:2212.13794, 2022.