Introduction

Consider a permutation w and it's one-line notation $w = w_1 w_2 \dots w_n$. An *inversion* of w is a pair of indices i < j such that $w_i > w_j$. For example, if w = 152869347, then $w_4 = 8$ and $w_7 = 3$ is an inversion. One way to visualize inversions is with the **Rothe diagram** of w, defined to be the following subset of cells in the first quadrant: $\mathbb{D}(w) = \{(i, w_i) : i < j, w_i > w_j\} \subset \mathbb{Z}^+ \times \mathbb{Z}^+.$

Graphically, we represent cells in $\mathbb{D}(w)$ by bubbles and use the French convention that the *i* coordinates are written on the vertical axis and the w_i coordinates are written on the horizontal axis.

Above is the Rothe diagram $\mathbb{D}(152869347)$ and the placement of its "death rays".

Connection with Schubert Varieties

By way of example, consider the nonsingular matrix

$$A = \begin{pmatrix} 6 & 8 & 3 & 1 \\ 8 & 7 & 3 & 1 \\ 5 & 2 & 2 & 1 \\ 6 & 4 & 4 & 2 \end{pmatrix}$$

Denoting row vectors by v_i , there is a nested sequence of subspaces

 $0 \subset \langle v_1 \rangle \subset \langle v_1, v_2 \rangle \subset \langle v_1, v_2, v_3 \rangle \subset \langle v_1, v_2, v_3, v_4 \rangle = \mathbb{C}^4.$

We call this nested sequence a **full flag** in \mathbb{C}^4 . The full flags are a projective subvariety of a product of Grassmanians:

$$Fl(\mathbb{C}^4) \subset \prod_{i=1}^4 Gr(i,4).$$

We can act on these flags by matrix multiplication from $GL_4(\mathbb{C})$. The union of the orbits is the full flag variety, with a coordinate flag in each orbit. These orbits are the **Schubert cells**, indexed by permutations:

$$Fl(\mathbb{C}^4) = \sqcup_w C_w$$

Question: what Schubert cell does A live in?

By row echelon moves that do not change the flag, we can obtain a canonical form of the matrix A with O's above leading 1's:

$$A = \begin{pmatrix} 6 & 8 & 3 & 1 \\ 8 & 7 & 3 & 1 \\ 5 & 2 & 2 & 1 \\ 6 & 4 & 4 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 2 & 2 & 1 \end{pmatrix}$$

Then we get a permutation from the leading 1's of the canonical form, in this case w = 4132. So the flag of A is contained in the Schubert cell C_{4132} . In general, C_{4132} contains exactly those flags whose canonical form is the Rothe diagram:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & * & 1 & 0 \\
1 & 0 & 0 & 0 \\
* & * & * & 1
\end{pmatrix}$$

Characterizing Rothe Diagrams

Jonathan Michala Ben Gillen

University of Southern California

Diagram Properties

(1)

Rothe diagrams satisfy many properties that bubble diagrams in general might not have. We asked what properties give us enough to say that a diagram is the Rothe diagram of some permutation. Thus, we were looking for statements of the form, "D is a Rothe diagram if and only if it satisfies properties X, Y, and Z". We defined the generalized form of the dot rule, the empty cell gap rule, and step-out avoidance to realize such characterizations.

Southwest Rule

A diagram $D \subset \mathbb{Z}^+ \times \mathbb{Z}^+$ is **southwest** if $(i, j) \in D$ and $(i', j') \in D$ imply $(\min(i, i'), \min(j, j')) \in D.$

Dot Rule

Define $c_i = \min\{j \in \mathbb{Z}^+ : j > j' \forall (i, j') \in D, j \neq c_{i'} \forall i' < i\}$. Then, R(D) = $\{(i,c_i)\}_{i=1}^{\infty}$ are the **row dots** of D. Similarly, define $r_i = \min\{i \in \mathbb{Z}^+: i > i' \forall (i',j) \in \mathbb{Z}^+$ $D, i \neq r_{j'} \forall j' < j$. Then, $C(D) = \{(r_j, j)\}_{j=1}^{\infty}$ are the **column dots** of D. A diagram satisfies the **dot rule** if R(D) = C(D). In a Rothe diagram, dots correspond to death ray origins.

Popping Rules

The *vertical popping* rule states that bubbles are not allowed to be placed above row dots. The *horizontal popping* rule states that bubbles are not allowed to be placed to the right of column dots. A diagram satisfies both popping rules if and only if it satisfies the dot rule.

Empty Cell Gap Rule

Include a "column 0" which is filled with a bubble in each row. These bubbles are called **basement bubbles**. The **final bubble** is defined as the last bubble in a row, where all cells afterwards are empty. With basement bubbles, each row must contain a final bubble. Consider bubbles in cells (i_0, w_0) and $(i_0, w_0 + n + 1)$ with no bubbles between them, i.e. with a horizontal gap of length $n \ge 1$. Let $\mathcal{B}_{(i_0,w_0+n+1)} \subset$ $\mathbb{Z}^{\geq 0} \times \mathbb{Z}^+$ be the region below the i_0 th row and bounded inclusively by the w_0 th and $(w_0 + n)$ th columns. A diagram satisfies the **empty cell gap** rule if, whenever there is a gap of size n, the box $\mathcal{B}_{(i,w+n+1)}$ contains exactly n final bubbles.

Numbering Rule and Step-out Avoidence

A diagram satisfies the *numbering condition* if horizontal numbering (labelling the bubbles in the *i*th row from left to right as $i, i+1, i+2, \cdots$) and vertical numbering (labelling the bubbles in the *j*th column from bottom to top $j, j+1, j+2, \cdots$) yield the same labels for each bubble.

For a diagram that satisfies the numbering condition, define a *step-out* to be a pair of bubbles numbered n and n + 1 in cells (i, w) and $(i + k, w + \ell)$ respectively. We say that an enumerated diagram is *step-out avoiding* if no pair of bubbles is a stepout in the diagram.

Characterizing Rothe Diagrams

Let D be a diagram. The following are equivalent:

- *D* is a Rothe diagram.
- D satisfies the numbering and dot rules.
- *D* satisfies the dot and southwest rules.

Free Columns Variation

A collection of free columns $C = \alpha_1, ..., \alpha_n$, is an ordered collection of subsets of \mathbb{Z}^+ . A subset α_i represents a column of bubbles, the rows given by the elements of α_i . Free columns are not allowed to move past each other horizontally. Apply a horizontal numbering to these columns. They satisfy the numbering condition if the columns are labeled with unbroken intervals whose starting values strictly increase moving left to right. There exists a unique placement of free columns into a Rothe diagram if and only if the columns satisfy the numbering condition and are step-out avoiding.

[1] Sami Assaf. An inversion statistic for reduced words. Adv. in Appl. Math., 107:1–21, 2019.

[2] Sara C. Billey. Tutorial on Schubert varieties and Schubert calculus. ICERM Tutorials, 2013.

Diagram Properties

• D satisfies the vertical popping and emtpy cell gap rules.

• D satisfies the numbering rule and is step-out avoiding.

References