Jonathan Michala Ben Gillen

University of Southern California

Introduction

Consider a permutation w and it's one-line notation $w=w_{1} w_{2} \ldots w_{n}$. An inversion of w is a pair of indices $i<j$ such that $w_{i}>w_{j}$. For example, if $w=152869347$, then $w_{4}=8$ and $w_{7}=3$ is an inversion. One way to visualize inversions is with the Rothe diagram of w, defined to be the following subset of cells in the first quadrant:

$$
\begin{equation*}
\mathbb{D}(w)=\left\{\left(i, w_{i}\right): i<j, w_{i}>w_{i}\right\} \subset \mathbb{Z}^{+} \times \mathbb{Z}^{+} \tag{1}
\end{equation*}
$$

Graphically, we represent cells in $\mathbb{D}(w)$ by bubbles and use the French convention that the i coordinates are written on the vertical axis and the w_{j} coordinates are written on the horizontal axis.

$$
\begin{aligned}
& { }_{1}^{3} 1000 \\
& 12345678 \\
& w_{j}
\end{aligned}
$$

w_{j}

Above is the Rothe diagram $\mathbb{D}(152869347)$ and the placement of its "death rays".

Connection with Schubert Varieties

By way of example, consider the nonsingular matrix

$$
A=\left(\begin{array}{llll}
6 & 8 & 3 & 1 \\
8 & 7 & 3 & 1 \\
5 & 2 & 2 & 1 \\
6 & 4 & 4 & 2
\end{array}\right)
$$

Denoting row vectors by v_{i}, there is a nested sequence of subspaces
$0 \subset\left\langle v_{1}\right\rangle \subset\left\langle v_{1}, v_{2}\right\rangle \subset\left\langle v_{1}, v_{2}, v_{3}\right\rangle \subset\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle=\mathbb{C}$
Ne call this nested sequence a full flag in \mathbb{C}^{4}. The full flags are a projective subvariety of a product of Grassmanians:

$$
F l\left(\mathbb{C}^{4}\right) \subset \Pi_{i=1}^{4} G r(i, 4) .
$$

We can act on these flags by matrix multiplication from $G L_{4}(\mathbb{C})$. The union of the orbits is the full flag variety, with a coordinate flag in each orbit. These orbits are the Schubert cells, indexed by permutations

$$
F l\left(\mathbb{C}^{4}\right)=\sqcup_{w} C_{w} .
$$

Question: what Schubert cell does A live in?
By row echelon moves that do not change the flag, we can obtain a canonical form of the matrix A with 0 's above leading 1's:

$$
A=\left(\begin{array}{llll}
6 & 8 & 3 & 1 \\
8 & 7 & 3 & 1 \\
5 & 2 & 2 & 1 \\
6 & 4 & 4 & 2
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 5 & 1 & 0 \\
1 & 0 & 0 & 0 \\
3 & 2 & 2 & 1
\end{array}\right)
$$

Then we get a permutation from the leading 1's of the canonical form, in this case $w=4132$. So the flag of A is contained in the Schubert cell C_{4132}. In general, C_{4132} contains exactly those flags whose canonical form is the Rothe diagram:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & * & 1 & 0 \\
1 & 0 & 0 & 0 \\
* & * & * & *
\end{array}\right)
$$

Diagram Properties

Rothe diagrams satisfy many properties that bubble diagrams in general might not have. We asked what properties give us enough to say that a diagram is the Rothe diagram of some permutation. Thus, we were looking for statements of the form, "D is a Rothe diagram if and only if it satisfies properties X, Y, and Z ". We defined the generalized form of the dot rule, the empty cell gap rule, and step-out avoidance to realize such characterizations

Southwest Rule

A diagram $D \subset \mathbb{Z}^{+} \times \mathbb{Z}^{+}$is southwest if $(i, j) \in D$ and $\left(i^{\prime}, j^{\prime}\right) \in D$ imply $\left(\min \left(i, i^{\prime}\right), \min \left(j, j^{\prime}\right)\right) \in D$.

Dot Rule

Define $c_{i}=\min \left\{j \in \mathbb{Z}^{+}+: j>j^{\prime} \forall\left(i, j^{\prime}\right) \in D, j \neq c_{i^{\prime}} \forall i^{\prime}<i\right\}$. Then, $R(D)=$ $\left\{\left(i, c_{i}\right)\right\}_{i=1}^{\infty}$ are the row dots of D. Similarly, define $r_{j}=\min \left\{i \in \mathbb{Z}^{+}: i>i^{\prime} \forall\left(i^{\prime}, j\right) \in\right.$ $\left.D, i \neq r_{j^{\prime}} \forall j^{\prime}<j\right\}$. Then, $C(D)=\left\{\left(r_{j}, j\right)\right\}_{j=1}^{\infty}$ are the column dots of D. A diagram satisfies the dot rule if $R(D)=C(D)$. In a Rothe diagram, dots correspond to death ray origins.

Popping Rules

The vertical popping rule states that bubbles are not allowed to be placed above row dots. The horizontal popping rule states that bubbles are not allowed to be placed to the right of column dots. A diagram satisfies both popping rules if and only if it satisfies the dot rule.

Empty Cell Gap Rule

Include a "column 0" which is filled with a bubble in each row. These bubbles are called basement bubbles. The final bubble is defined as the last bubble in a row, where all cells afterwards are empty. With basement bubbles, each row must contain a final bubble. Consider bubbles in cells $\left(i_{0}, w_{0}\right)$ and $\left(i_{0}, w_{0}+n+1\right)$ with no bubbe m $\mathbb{Z}^{\geq 0} \times \mathbb{Z}^{+}$be the region, i.e. with a horizontal gap of length $n \geq 1$. Let $\mathcal{B}_{\left(i_{0}, w_{0}+n+1\right)} \subset$ $\left(w_{0}+n\right)$ th columns. A diagram satisfies the empty cell gap rule if, whenever there is a gap of size n, the box $\mathcal{B}_{(i, w+n+1)}$ contains exactly n final bubbles.

Diagram Properties

Numbering Rule and Step-out Avoidence

A diagram satisfies the numbering condition if horizontal numbering (labelling the bubbles in the i th row from left to right as $i, i+1, i+2, \cdots$) and vertical numbering labelling the bubbles in the j th column from bottom to top $j, j+1, j+2, \cdots$) yield the same labels for each bubble.
For a diagram that satisfies the numbering condition, define a step-out to be a pair f bubbles numbered n and $n+1$ in cells (i, w) and $(i+k, w+\ell)$ respectively. We say that an enumerated diagram is step-out avoiding if no pair of bubbles is a stepout in the diagram.

Characterizing Rothe Diagrams

Let D be a diagram. The following are equivalent:

D is a Rothe diagram
D satisfies the vertical popping and emtpy cell gap rules

- D satisfies the numbering and dot rules
D satisfies the dot and southwest rules.
D satisfies the numbering rule and is step-out avoiding.

Free Columns Variation

A collection of free columns $C=\alpha_{1}, \ldots, \alpha_{n}$, is an ordered collection of subsets of \mathbb{Z}^{+}. A subset α_{i} represents a column of bubbles, the rows given by the elements of α_{i}. Free columns are not allowed to move past each other horizontally. Apply a horizontal numbering to these columns. They satisfy the numbering condition if the columns are labeled with unbroken intervals whose starting values strictly increase moving left to right. There exists a unique placement of free columns into a Rothe diagram if and only if the columns satisfy the numbering condition and are step-out avoiding.

References

[^0]
[^0]: 1] Sami Assaf.
 An inversion statistic for reduced words.
 [2] Sara C. Billey.
 CERM Tutorials, 2013.

