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• fundamental tasks:
counting, sampling, optimization

+ exhaustive generation [Knuth TAOCP Vol. 4A]
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• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

• Examples:

binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [Trotter 62]

bitstrings by bitflips (Binary reflected Gray code) [Gray 53]

set partitions by element exchanges [Kaye 76]
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Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

• Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes

• Idea: Encode objects as a set Fn ⊆ Sn of permutations of
length n

+ in particular, objects defined by pattern-avoidance
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• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• If every permutation from Fn is visited, we say that Algorithm J
generates Fn (visiting twice is impossible)

• Question: When does Algorithm J generate Fn?
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• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

• Examples:

prune nothing: Fn = Sn, |Fn| = n!

prune all green nodes:
Fn = permutations
without peaks,
|Fn| = 2n−1

prune nothing: Fn = Sn, |Fn| = n!
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• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree.

• the number of zigzag languages is enormous:

≥ 2(n−1)!(n−2) = 22
Θ(n log n)

• many of them encode interesting combinatorial objects
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Steinhaus-Johnson-Trotter! Binary reflected Gray code!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps bitflips

xi =

{
0 i right of smaller entries

1 i left of smaller entries

423
000
001
011
010
110
111

101
100

f

adjacent transpositions
minimal jumps

↪→ HC on permutahedron
↪→ HC on hypercube
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General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

• interpret Algorithm J under the bijection

f

List = Algo J(Fn) f−1(List)

Algo J f−1(Algo J)

• minimal jumps ‘small changes’
↪→ walks on lattices / polytopes
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Efficient algorithms
• greedy algorithm as stated very inefficient (store and look-up

exponentially many previous permutations)

• can make it history-free (no look-up needed)

• running time in each step governed by membership tests in
Fn; typically Fn not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)

• in many cases polynomial-time algorithms for concrete
objects, sometimes even loopless
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Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• II. lattice congruences of the weak order on Sn

• V. acyclic orientations of graphs [SODA’23]

• IV. elimination trees [SODA’22]

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]



Pattern-avoiding permutations
• Sn(τ1, . . . , τk) ⊆ Sn := set of permutations avoiding each of

the patterns τ1, . . . , τk
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Pattern-avoiding permutations

Theorem: If τ1, . . . , τk are tame patterns, then Sn(τ1, . . . , τk)
is a zigzag language.

• A pattern τ is tame, if
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classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
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Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families • diagonal rectangulations

• bitstrings by flips (BRGC)

→ see the Combinatorial Object Server: www.combos.org/jump

135 2 5 413 2-clumped pms. • generic rectangulations4, 2,
13,524 13524



Grid classes
• monotone grid class Gridn(M) [Huczynska, Vatter 06]

• geometric grid class Geon(M) [Albert et al. 13]



Grid classes

Theorem: If M = , then both Gridn(M) and Geon(M)
are zigzag languages.

-1 +1

• monotone grid class Gridn(M) [Huczynska, Vatter 06]

• geometric grid class Geon(M) [Albert et al. 13]
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Mixed tree patterns

P T

T contains P

T ′

mixed (new)

T ′ avoids P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern τ(P ) = (f(P ), C) such that f : Tn(P ) →
Sn(231, τ(P )) is a bijection.

• generalizes result of [Pudwell, Scholten, Schrock, Serrato 14]

• classified all tree patterns on≤ 5 vertices; interesting bijections
to pattern-avoiding lattice paths and set partitions



Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous



Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If P1, . . . , Pk are tame patterns, then
f(Tn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of rotations.



Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If P1, . . . , Pk are tame patterns, then
f(Tn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of rotations.

→ see www.combos.org/btree
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Generic rectangulations
• Generic rectangulation: subdivision of a square into n
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Generic rectangulations
Theorem [Reading 12]: There is a bijection f between Rn and
Sn(35124, 35142, 24513, 42513) (2-clumped permutations).

Theorem: Under f−1, minimal jumps of Algorithm J translate to
rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (↪→ HC on quotientope).

simple flip

T -flip

wall slide

rectangle flips

is a zigzag language, so Algorithm J applies



Flip Gray code
n = 3

n = 4
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Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Theorem: If P1, . . . , Pk are tame patterns, then
f(Rn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of
rectangle flips.
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Rn( ),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn( ), , ,

Rn( ), guillotine rectangulations

Rn( )

Rn( ),

Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

stacked rectangulations

Cn

2n

↪→ HC on quotientope

↪→ HP on associahedron

↪→ HC on hypercube

→ see www.combos.org/rect
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Open questions

• Does every rectangulation pattern correspond to a mesh
permutation pattern? → [Asinowski, Cardinal, Felsner, Fusy PP23]

• Applications of the generation framework to other (pattern-
avoiding) combinatorial objects

• Generating functions for mixed tree patterns?

• Third notion of edge type in tree patterns



Thank you!


