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Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation

e Results: all aforementioned algorithms as special cases
+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes
-+ in particular, objects defined by pattern-avoidance

e Ildea: Encode objects as a set F,, C S,, of permutations of
length n
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Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

e If every permutation from F), is visited, we say that Algorithm _
generates F,, (visiting twice is impossible)

e Question: When does Algorithm J generate F),?
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e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C 5, In
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e Examples: c
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F,, = permutations
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Fn| = A ‘
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Tree of permutations

e we may prune subtrees iff their root is e

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree. [

e the number of zigzag languages is enormous:
> 2(n—1)!(n—2) _ 22@(n10g n)

e many of them encode interesting combinatorial objects
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__on—1
b Fy| =2
n - mn
' 234
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F,, = permutations

Exa m ples without peaks

F | =9on—1
Fo=8, [£5]
234
‘Fn| = n/! 1234 1234 000
1243 4123 001
1423 4312 011
4123 3124 ««a—» 010
4132 3214 110
1432 4321 111
1342 4213 101
1324 2134 100
3124
3142
3412 4 o _
g%i 0 ¢ right of smaller entries
€T, —
3241 1 . .
3514 1 ¢ left of smaller entries
2314 \
2341
2431
4231
4213
2413
2143
2134
Steinhaus-Johnson-Trotter! Binary reflected Gray code!
minimal jumps minimal jumps <— bitflips
<— adjacent transpositions — HC on hypercube

— HC on permutahedron
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General approach

Set of f Combinatorial
permutations - objects
e run Algorithm J
List = Algo J(F,) ~ [~ (List)
e Interpret Algorithm J under the bijection
Algo J > f~1(Algo J)
e minimal jumps > ‘small changes’

— walks on lattices / polytopes
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Etficient algorithms

e greedy algorithm as stated very inefficient (store and look-up
exponentially many previous permutations)

e can make it history-free (no look-up needed)

e running time in each step governed by membership tests in
F,; typically F},, not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)

e in many cases polynomial-time algorithms for concrete
objects, sometimes even loopless
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Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |ll. pattern-avoiding rectangulations (sece'

e VI. pattern-avoiding binary trees



Pattern-avoiding permutations

e S, (11,...,7x) C S5, := set of permutations avoiding each of
the patterns 71,..., 7%



Pattern-avoiding permutations

e A pattern 7 is tame, if



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @
2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413 &
2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: 4+ no shaded cell in the top row




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: 4+ no shaded cell in the top row

v




Pattern-avoiding permutations

e A pattern 7 is tame, if

classical: largest entry not at the boundary

2413 @ 4213
vincular: 4 one vincular pair involving the largest entry
2413 @ 2413
2413 @ 2413 &
mesh: + no shaded cell in the top row
& &




Pattern-avoiding permutations

e A pattern 7 is tame, if
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Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: + no shaded cell in the top row

o 1@ | (%

Theorem: If 7,..., 7 are tame patterns, then S,,(7,..., %)
Is a zigzag language.
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Pattern-avoiding permutations

binary trees by rotations
triangulations by flips
Dyck paths by hill flips
set partitions by
element exchanges

Tame patterns <L> Combinatorial objects
231 Catalan families ®

o

®
231 Bell families ~ ®
231,132 .

24_13,3M2 Baxter families ®

35_124,35_142, 2-clumped pms. ©
24513,42513

bitstrings by flips (BRGC)
diagonal rectangulations

generic rectangulations

— see the Combinatorial Object Server: www.combos.org/jump
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Grid classes

e monotone grid class Grid,, (M) [Huceynska, Vatter 06]

e geometric grid class Geo,, (M) [awert et al. 13)

Theorem: If M =

-1

+1

are zigzag languages.

, then both Grid,,(M) and Geo,, (M)
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Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5)  [9)
Theorem frawoe: There is a bijection f 2} @0
between T, and S,,(231). SV ORI

3
f(I) = (r(T), L(T), R(T))
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)
e 5, (231) is a zigzag language, so Algorithm J applies

Theorem: Under f~!, minimal jumps of Algorithm J translate to

tree rotations, i.e., we obtain a rotation Gray code for binary trees
(< HP on associahedron). 00 -— 06
= [Lucas, Roelants van Baronaigien, Ruskey 93] A
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Mixed tree patterns

T/
mixed (new) //
\
"o
T’ avoids P
1" contains P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern 7(P) = (f(P),C) such that f : T,(P) —
Sn(231,7(P)) is a bijection.

® generalizes reSU|t Of [Pudwell, Scholten, Schrock, Serrato 14]

e classified all tree patterns on < 5 vertices; interesting bijections
to pattern-avoiding lattice paths and set partitions
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Tame patterns

e A pattern P is tame, if the largest node is
neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If Py, ..., P, are tame patterns, then
f(T,(Py,...,P)) is a zigzag language. Under f—1,
minimal jumps of Algorithm J translate to sequences of rotations.

— see www.combos.org/btree
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Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

e ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

e R, := set of all rectangulations with n rectangles

- g I O S
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Generic rectangulations

Theorem [reading 1212 There is a bijection f between R, and
Sn(35124,35142,24513,42513) (2-clumped permutations).

N\

IS avzigzag language, so Algorithm J applies

Theorem: Under =1, minimal jumps of Algorithm J translate to

rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (<— HC on quotientope).

!

rectangle flips

wall slide

i e

;|



Flip Gray code

n =3

123 132 312 321 231 213

n=4

1234 1243 1423 4123 4132 1432 1342 1324 3124 3142 3412

4312 4321 3421 3241 3214 2314 2341 2431 4231 4213 2413

2143 2134
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e Segment: maximal sequence of inner edges

e Pattern: connected configuration of segments

P =

can be seen as a rectangulation itself

contains P
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Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

v & X X

- | R

Theorem: If Py, ..., P, are tame patterns, then
f(R,(Py,...,P)) is a zigzag language. Under f~1,
minimal jumps of Algorithm J translate to sequences of
rectangle flips.




Examples

diagonal rectangulations




Examples

) diagonal rectangulations
’ — HC on quotientope

R, (




Examples

R, ( ) diagonal rectangulations
" ’ — HC on quotientope

R,( ) area-universal rectangulations
" ! ! ? [Eppstein, Mumford, Speckmann, Verbeek 2012]




Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

) area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

R, ( , ) guillotine rectangulations




Examples

R ) diagonal rectangulations
" ’ — HC on quotientope

R ( ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]




Examples

R ) diagonal rectangulations
" ’ — HC on quotientope

R ( ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]

< HP on associahedron



Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"




Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Catalan staircases C
R (1) n
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"

— HC on hypercube



Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"
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Open questions

Generating functions for mixed tree patterns?
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Does every rectangulation pattern correspond to a mesh

perm Utation pattern? — [Asinowski, Cardinal, Felsner, Fusy PP23]

Applications of the generation framework to other (pattern-
avoiding) combinatorial objects
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