Etfficient algorithms for generating
pattern-avoiding combinatorial objects

Torsten Mutze
University of Warwick + Charles University Prague

joint work with Petr Gregor (Charles University), Elizabeth Hartung (MCLA), Hung P. Hoang (ETH Zurich),

Permutation Patterns 2023



Introduction

e many different classes of combinatorial objects

A0

binary trees



Introduction

e many different classes of combinatorial objects

/<\/>\% 15

312
321

binary trees permutations



Introduction

e many different classes of combinatorial objects

123 000
132 001

312 010
321 011

binary trees permutations bitstrings



Introduction

e many different classes of combinatorial objects

312 010 {1,2}{3,4}
N

123 000 {1,2,3,4}
/<\/>\>> 132 001 {1,2,3}{4)

binary trees permutations bitstrings set partitions



Introduction

e many different classes of combinatorial objects

123 000 {1,2,3,4}
/Ké‘/>\$>> 132 001 {1,2,3}{4)

253 o {1,2}{3,4}
- o 11,23{3}H4}
binary trees permutations bitstrings set partitions

e fundamental tasks:
counting, sampling, optimization



Introduction

e many different classes of combinatorial objects

312 010
321 011

123 000
132 001

{1,2,3,4}
11,2,3}{4;
(1,2}(3,4]
(1,2}{31{1}

binary trees permutations bitstrings

e fundamental tasks:
counting, sampling, optimization
+ exhaustive generation [knuth TaoCP Vol. 4a]

set partitions

The Art of
Computer
Programming

DONALD E. KNUTH




Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time

e consecutive objects differ by ‘small amount’ — Gray code



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time

e consecutive objects differ by ‘small amount’ — Gray code

e Examples:

o binary trees by rOtationS [Lucas, Roelants van Baronaigien, Ruskey 93]



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time

e consecutive objects differ by ‘small amount’ — Gray code

e Examples:

o binary trees by rOtationS [Lucas, Roelants van Baronaigien, Ruskey 93]

o permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) pohnson 641, [Trotter 62]



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time

e consecutive objects differ by ‘small amount’ — Gray code

e Examples:

o binary trees by rOtationS [Lucas, Roelants van Baronaigien, Ruskey 93]

o permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) pohnson 641, [Trotter 62]

o bitstrings by bitflips (Binary reflected Gray code) (cray 53



Exhaustive generation

e Goal: generate all objects of a combinatorial class efficiently

e ultimately: each new object in constant time

e consecutive objects differ by ‘small amount’ — Gray code

e Examples:

o binary trees by rOtationS [Lucas, Roelants van Baronaigien, Ruskey 93]

o permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) pohnson 641, [Trotter 62]

o bitstrings by bitflips (Binary reflected Gray code) (cray 53
o set partitions by element exchanges [aye 76]



Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations



Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations




Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations




Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations

0001 1001
0101 0111 1111 1101
0100 0110 1110 1100

0000 1000




Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations

0001 1001
0101 0111 1111 1101
0100 0110 1110 1100

0000 1000

e many flip graphs can be equipped with a poset structure and
realized as polytopes



Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations

0001 1001
0101 0111 1111 1]01
0100 0110 1110 1100
0000 1000
Tamari lattice / weak order / Boolean lattice /
associahedron permutahedron hypercube

e many flip graphs can be equipped with a poset structure and
realized as polytopes



Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations

0001 1001
0101 0111 1111 1]01
0100 0110 1110 1100
0000 1000
Tamari lattice / weak order / Boolean lattice /
associahedron permutahedron hypercube

e many flip graphs can be equipped with a poset structure and
realized as polytopes

e exhaustive generation — Hamilton path (HP)/cycle (HC)



Flip graphs, lattices & polytopes

e Flip graph: vertices are combinatorial objects, edges capture
change operations

Tamari lattice / weak order / Boolean lattice /
associahedron permutahedron hypercube

e many flip graphs can be equipped with a poset structure and
realized as polytopes

e exhaustive generation — Hamilton path (HP)/cycle (HC)



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation

e Results: all aforementioned algorithms as special cases



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation

e Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation

e Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes

-+ in particular, objects defined by pattern-avoidance



Gray code generation

e many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

o cf. generating functions for counting
o cf. Markov chains for random sampling

e This work: a general framework for Gray code generation

e Results: all aforementioned algorithms as special cases
+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes
-+ in particular, objects defined by pattern-avoidance

e Ildea: Encode objects as a set F,, C S,, of permutations of
length n



Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| ¢
451326




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| }
451326
413256




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

\/

>
4
4
4
4
4
4
4
4
4
4
4
Lpos

14 L
’vvvvvvvvvvvv'




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

\/

>
4
4
4
4
4
4
4
4
4
4
4
Lpos

14 L
’vvvvvvvvvvvv'




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| }
451326
413256

right jump ‘

{
Ay

&
S

>

E

»

»

b

»
==

PYVVVVVVVVVS
>
\¢




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| }
451326
413256

right jump ‘

{
Ay

&
S

>

E

»

»

b

»
==

PYVVVVVVVVVS
>
\¢




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| }
451326
413256

right jump ‘ l

{
Ay

&
S

>

E

»

»

b

»
==

PYVVVVVVVVVS
>
\¢




Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

| }
451326
413256

‘ left jump

i

&
S

>

&

4

4

4

&

&

;4

4

&

ti

WX



Jumps

e Jump:= move an entry in the permutation across some
neighboring smaller entries (left or right)

4
A

i

&
S

>

&

4

4

4

&

&

;4

4

&

ti

WX



Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of

the largest possible value, so that a previously unvisited
permutation from Fj, is created.




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces
a permutation in F),




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces
a permutation in F,, | l

6/132453




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces

R X |
67132458




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces

I xx|
67132458




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces

o xxx
67132458




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

e Minimal jump: no shorter jump of the same value produces

L OXxxx
67132458




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

e Minimal jump: no shorter jump of the same value produces

L OXxxx
67132458




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: f, — {1243, 1423,2134,4123, 4213}
1243




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}
P4y
1243




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: p, — {1243, 1423,2134, 4123, 4213}
v
1243




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: p, — {1243, 1423,2134, 4123, 4213}

1243
1423




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: p, — {1243, 1423,2134, 4123, 4213}

1243
1423




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: p, — {1243, 1423,2134, 4123, 4213}

1243
1423

Y




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243
1423
4|




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243
1423
4123




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134, 4123, 4213}

1243

1423

4123
4|




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134, 4123, 4213}

1243
1423
4123
4213




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: f, — {1243, 1423,2134,4123, 4213}

1243
1423
4123

4213
L4




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: f, — {1243, 1423,2134,4123, 4213}

1243
1423
4123
4213
2134




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: f, — {1243, 1423,2134,4123, 4213}

1243
1423
1213
2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: f, — {1243,1423,2134,4123, 4213}

1243 4213
1423

1213

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243 4213
1423
4123
4213

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243 4213
1423 2134
4123
4213

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243 4213
1423 2134 3
ﬁ%%g no jump possible

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

1243 4213 1423
1423 2134 3
ﬁ%%g no jump possible

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

v v
1243 4213 1423
1423 2134
ﬁ%%g no jump possible

2134 &




Algorithm J

Algorithm J
attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

o Example: F, — {1243, 1423,2134,4123, 4213}

v ¥
1243 4213 1423
1423 2134 direction ambiguous
ﬁ%%g no jump possible

2134 &




Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

e If every permutation from F), is visited, we say that Algorithm _
generates F,, (visiting twice is impossible)



Algorithm J

Algorithm J

attempts to generate a set of permutations F,, C 5,
e Start with an initial permutation.

e In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fj, is created.

Stop if no jump is possible or jump direction is ambiguous.

e If every permutation from F), is visited, we say that Algorithm _
generates F,, (visiting twice is impossible)

e Question: When does Algorithm J generate F),?



Tree of permutations

e root := empty permutation ¢

e given a permutation length n — 1, its children are obtained by
inserting n In every possible position

12 1

123 _~134 2 32 91 213



Tree of permutations

e root := empty permutation ¢

e given a permutation length n — 1, its children are obtained by
inserting n In every possible position

12 1

123 134 2 32 31213
depth n = >

all permutations
of length n




Tree of permutations

e root := empty permutation ¢

e given a permutation length n — 1, its children are obtained by
inserting n In every possible position

e symbol n at leftmost or

£
rightmost position .
o else
12 1
123_~13; 2 32 31 213
depth n = >

all permutations
of length n



Tree of permutations

e root := empty permutation ¢

e given a permutation length n — 1, its children are obtained by
inserting n In every possible position

e symbol n at leftmost or

£
rightmost position .
o else
12 1
123_~13; 2 32 31 213
depth n = >

all permutations
of length n



Tree of permutations

e root := empty permutation ¢

e given a permutation length n — 1, its children are obtained by
inserting n In every possible position

e symbol n at leftmost or

£
rightmost position .
o else
12 1
123_~13; 2 32 31 213
depth n = >

all permutations
of length n



Tree of permutations

e we may prune subtrees iff their root is

12

123 _~134

32

13



Tree of permutations

e we may prune subtrees iff their root is

12

32

13



Tree of permutations

e we may prune subtrees iff their root is

12

32

13



Tree of permutations

e we may prune subtrees iff their root is

12

13



Tree of permutations

e we may prune subtrees iff their root is

12 1




Tree of permutations

e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C 5, In
depth n is called zigzag language

12 1




Tree of permutations

e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C 5, In
depth n is called zigzag language

12 1




Tree of permutations

e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C 5, In
depth n is called zigzag language

12 1




Tree of permutations

e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

e Examples: c

o prune nothing: I}, = S,, |F,|=n! 4
12 1

123 _~134 2 32 91 213



Tree of permutations

e we may prune subtrees iff their root is

e given any such pruned tree, a set of permutation F,, C 5, In
depth n Is called zigzag language

e Examples: c
o prune nothing: I, = S,, |F,|=n! 4

o prune all green nodes: 19
F,, = permutations
without peaks, 193
Fn| = A ‘

32




Tree of permutations

e we may prune subtrees iff their root is e

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.




Tree of permutations

e we may prune subtrees iff their root is e

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree. [




Tree of permutations

e we may prune subtrees iff their root is e

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree. [

e the number of zigzag languages is enormous:

> 2(n—1)!(n—2) _ 22@(n10g m)




Tree of permutations

e we may prune subtrees iff their root is e

e given any such pruned tree, a set of permutation F,, C S, in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree. [

e the number of zigzag languages is enormous:
> 2(n—1)!(n—2) _ 22@(n10g n)

e many of them encode interesting combinatorial objects




Examples

F,, = permutations

without peaks
‘Fn‘ — 2n—1



Examples

1234
1243
1423
4123
4132
1432
1342
1324
3124
3142
3412
4312
4321
3421
3241
3214
2314
2341
2431
4231
4213
2413
2143
2134

F,, = permutations

without peaks
F| = 2n—



F,, = permutations

Exa m ples without peaks
Fn :Sn ‘Fn‘ :2n—1

‘F | p— n' 1234
n 1243
1423
4123
4132
1432
1342
1324
3124
3142
3412
4312
4321
3421
3241
3214
2314
2341
2431
4231
4213
2413
2143
2134

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks
Fn :Sn ‘Fn‘ :2n—1

‘]§}Z| — n/! 1234 1234
1243 4123
1423 4312
4123 3124
4132 3214
1432 4321
1342 4213
%%%ﬁ 2134
3142
3412
4312
4321
3421
3241
3214
2314
2341
2431
4231
4213
2413
2143
2134

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



Examples

Fn :Sn
F,| =n!

1234
1243
1423
4123
4132
1432
1342

F,, = permutations

without peaks
‘Fn‘ — 2n—1

1234

4123
4312
3124
3214
4321
4213

1324
3124
3142
3412
4312
4321
3421
3241
3214
2314
2341
2431
1513
2213 / not a sublist
2143

2134

2134

S\

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks
Fn :Sn ‘Fn‘ :2n—1

‘]§}Z| — n/! 1234 1234
1243 4123
1423 4312
4123 3124
4132 3214
1432 4321
1342 4213
%%%ﬁ 2134
3142
3412
4312
4321
3421
3241
3214
2314
2341
2431
4231
4213
2413
2143
2134

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks
Fn :Sn ‘Fn‘ :2n—1

‘]§}Z| — n/! 1234 1234
1243 4123
1423 4312
4123 3124 «+—»
4132 3214
1432 4321
1342 4213
%%%ﬁ 2134
3142
3412

(
g%i 0 ¢ right of smaller entries
aj- p—
3241 1 . .
3514 1 17 left of smaller entries
2314 \
2341
2431
4231
4213
2413
2143
2134

234

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks
Fn :Sn ‘Fn‘ :2n—1

‘]§}Z| — n/! 1234 1234
1243 4123
1423 4312
4123 3124 «+—»
4132 3214
1432 4321
1342 4213
%%%ﬁ 2134
3142
3412

(
g%i 0 ¢ right of smaller entries
aj- p—
3241 1 . .
3514 1 17 left of smaller entries
2314 \
2341
2431
4231
4213
2413
2143
2134

N
w
=Y

OI—H—'OOI—H—'O‘

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks

__on—1
b Fy| =2
n - mn
' 234

‘Fn| — N. 1234 1234 000
1243 4123 001
1423 4312 011
4123 3124 «—» 010
4132 3214 110
1432 4321 111
1342 4213 101
1324 2134 100
3124
i :
1331 0 4 right of smaller entries
3421 €T: —
3241 (2 . .
3514 1 17 left of smaller entries
2314 \
2341
2431
4231
4213
2413
2143
2134

Steinhaus-Johnson-Trotter!
minimal jumps

<— adjacent transpositions
— HC on permutahedron



F,, = permutations

Exa m ples without peaks

F | =9on—1
Fo=8, [£5]
234
‘Fn| = n/! 1234 1234 000
1243 4123 001
1423 4312 011
4123 3124 ««a—» 010
4132 3214 110
1432 4321 111
1342 4213 101
1324 2134 100
3124
3142
3412 4 o _
g%i 0 ¢ right of smaller entries
€T, —
3241 1 . .
3514 1 ¢ left of smaller entries
2314 \
2341
2431
4231
4213
2413
2143
2134
Steinhaus-Johnson-Trotter! Binary reflected Gray code!
minimal jumps minimal jumps <— bitflips
<— adjacent transpositions — HC on hypercube

— HC on permutahedron



General approach

Combinatorial
objects




General approach

Set of f Combinatorial
permutations - objects




General approach

Set of
permutations

e run Algorithm J

f

List = Algo J(F),)

Combinatorial
objects




General approach

Set of f Combinatorial
permutations - objects
e run Algorithm J
S ~ f~1(List)
List = Algo J(F},)



General approach

Set of f Combinatorial
permutations - objects

e run Algorithm J
List = Algo J(F,) ~ [~ (List)

e Interpret Algorithm J under the bijection
Algo J



General approach

Set of f Combinatorial
permutations - objects

e run Algorithm J
. . > f_l(LiSt)
List = Algo J(F},)

e Interpret Algorithm J under the bijection
Algo J > f~1(Algo J)




General approach

Set of f Combinatorial
permutations - objects

e run Algorithm J
S ~ f~1(List)
List = Algo J(F},)

e Interpret Algorithm J under the bijection
Algo J > f~1(Algo J)

e minimal jumps > ‘small changes’




General approach

Set of f Combinatorial
permutations - objects
e run Algorithm J
List = Algo J(F,) ~ [~ (List)
e Interpret Algorithm J under the bijection
Algo J > f~1(Algo J)
e minimal jumps > ‘small changes’

— walks on lattices / polytopes



Etficient algorithms

e greedy algorithm as stated very inefficient (store and look-up
exponentially many previous permutations)



Etficient algorithms

e greedy algorithm as stated very inefficient (store and look-up
exponentially many previous permutations)

e can make it history-free (no look-up needed)



Etficient algorithms

e greedy algorithm as stated very inefficient (store and look-up
exponentially many previous permutations)

e can make it history-free (no look-up needed)

e running time in each step governed by membership tests in
F,; typically F},, not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)



Etficient algorithms

e greedy algorithm as stated very inefficient (store and look-up
exponentially many previous permutations)

e can make it history-free (no look-up needed)

e running time in each step governed by membership tests in
F,; typically F},, not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)

e in many cases polynomial-time algorithms for concrete
objects, sometimes even loopless



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e VI. pattern-avoiding binary trees



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |ll. pattern-avoiding rectangulations (sece'

e VI. pattern-avoiding binary trees



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |l. lattice congruences of the weak order on 5,

e |ll. pattern-avoiding rectangulations (sece'

e VI. pattern-avoiding binary trees



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |l. lattice congruences of the weak order on 5,
e |ll. pattern-avoiding rectangulations (sece'

e V. elimination trees [sopa22

e VI. pattern-avoiding binary trees



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |l. lattice congruences of the weak order on 5,
e |ll. pattern-avoiding rectangulations (sece'2

e V. elimination trees [sopa22

e V. acyclic orientations of graphs [soba;)

e VI. pattern-avoiding binary trees



Applications

e |. pattern-avoiding permutations (classical/vincular/
mesh patterns, monotone and geometric grid classes) [sopba20

e |ll. pattern-avoiding rectangulations (sece'

e VI. pattern-avoiding binary trees



Pattern-avoiding permutations

e S, (11,...,7x) C S5, := set of permutations avoiding each of
the patterns 71,..., 7%



Pattern-avoiding permutations

e A pattern 7 is tame, if



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @
2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413 &
2413 @



Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: 4+ no shaded cell in the top row




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: 4+ no shaded cell in the top row

v




Pattern-avoiding permutations

e A pattern 7 is tame, if

classical: largest entry not at the boundary

2413 @ 4213
vincular: 4 one vincular pair involving the largest entry
2413 @ 2413
2413 @ 2413 &
mesh: + no shaded cell in the top row
& &




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: + no shaded cell in the top row

o 1@ | (%




Pattern-avoiding permutations

e A pattern 7 is tame, if
classical: largest entry not at the boundary

2413 @ 4213 &

vincular: 4 one vincular pair involving the largest entry

2413 @ 2413
2413 @ 2413

mesh: + no shaded cell in the top row

o 1@ | (%

Theorem: If 7,..., 7 are tame patterns, then S,,(7,..., %)
Is a zigzag language.



Pattern-avoiding permutations

Tame patterns «<——— Combinatorial objects




Pattern-avoiding permutations

Tame patterns «<——— Combinatorial objects

231 Catalan families



Pattern-avoiding permutations
/

Tame patterns «<——— Combinatorial objects

231 Catalan families ® binary trees by rotations
e triangulations by flips

e Dyck paths by hill flips



Pattern-avoiding permutations
/

Tame patterns «<——— Combinatorial objects

231 Catalan families ® binary trees by rotations
e triangulations by flips

e Dyck paths by hill flips
231 Bell families



Pattern-avoiding permutations
/

Tame patterns «<——— Combinatorial objects

231 Catalan families ® binary trees by rotations
e triangulations by flips

e Dyck paths by hill flips

231 Bell families e set partitions by
element exchanges



Pattern-avoiding permutations

binary trees by rotations
triangulations by flips
Dyck paths by hill flips

Tame patterns i» Combinatorial objects
231 Catalan families ®

:
231 Bell families

231,132 .

set partitions by
element exchanges

bitstrings by flips (BRGC)



Pattern-avoiding permutations

binary trees by rotations
triangulations by flips
Dyck paths by hill flips
set partitions by
element exchanges

Tame patterns <L> Combinatorial objects
231 Catalan families ®

o

®
231 Bell families ~ ®
231,132 .

24_13, 3M2 Baxter families

bitstrings by flips (BRGC)



Pattern-avoiding permutations

binary trees by rotations
triangulations by flips
Dyck paths by hill flips
set partitions by
element exchanges

Tame patterns <L> Combinatorial objects
231 Catalan families ®

o

®
231 Bell families ~ ®
231,132 .

24_13,3M2 Baxter families ®

bitstrings by flips (BRGC)

diagonal rectangulations



Pattern-avoiding permutations

f

Tame patterns «<——— Combinatorial objects

231 Catalan families ®
o
®

231 Bell families o

231,132 .
24_13,3M2 Baxter families ®

35_124, 35_142, 2-clumped pms.
24513,42513

binary trees by rotations
triangulations by flips
Dyck paths by hill flips
set partitions by
element exchanges

bitstrings by flips (BRGC)

diagonal rectangulations



Pattern-avoiding permutations

f

Tame patterns «<——— Combinatorial objects

231 Catalan families ®

231 Bell families ¢

231,132 .
24_13,3M2 Baxter families ®

35_124,35_142, 2-clumped pms. ©
24513,42513

binary trees by rotations
triangulations by flips
Dyck paths by hill flips

set partitions by
element exchanges

bitstrings by flips (BRGC)
diagonal rectangulations

generic rectangulations



Pattern-avoiding permutations

binary trees by rotations
triangulations by flips
Dyck paths by hill flips
set partitions by
element exchanges

Tame patterns <L> Combinatorial objects
231 Catalan families ®

o

®
231 Bell families ~ ®
231,132 .

24_13,3M2 Baxter families ®

35_124,35_142, 2-clumped pms. ©
24513,42513

bitstrings by flips (BRGC)
diagonal rectangulations

generic rectangulations

— see the Combinatorial Object Server: www.combos.org/jump



Grid classes

e monotone grid class Grid,, (M) [Huceynska, Vatter 06]

e geometric grid class Geo,, (M) [awert et al. 13)



Grid classes

e monotone grid class Grid,, (M) [Huceynska, Vatter 06]

e geometric grid class Geo,, (M) [awert et al. 13)

Theorem: If M =

-1

+1

are zigzag languages.

, then both Grid,,(M) and Geo,, (M)



Binary trees

g



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex ¢, we have L(i) < i < R(%) 6T
5 {9

2, @
1 4 8

3



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7) 6T
e T, := binary (search) trees with n vertices 5 (9
2, T
SV CORRC:)

3



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5) (9)
Theorem frawoe: There is a bijection f 2 @ M
between T, and S,,(231). U 4 ®

3



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5) (9)
Theorem frawoe: There is a bijection f 2 @ M
between T, and S,,(231). U 4 ®

F(T) = (+(T), L(T), R(T)) 3

‘preorder traversal’



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5) (9)
Theorem frawoe: There is a bijection f 2 @ M
between T, and S,,(231). U 4 ®

F(T) i= (r(T), L(T), R(T) 3
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5)  [9)
Theorem frawoe: There is a bijection f 2} @0
between T, and S,,(231). SV ORI

F(T) i= (r(T), L(T), R(T) 3
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5)  [9)
Theorem frawoe: There is a bijection f 2} @0
between T, and S,,(231). SV ORI

3
f(I) = (r(T), L(T), R(T))
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)
e 5, (231) is a zigzag language, so Algorithm J applies



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5)  [9)
Theorem frawoe: There is a bijection f 2} @0
between T, and S,,(231). SV ORI

3
f(I) = (r(T), L(T), R(T))
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)
e 5, (231) is a zigzag language, so Algorithm J applies

Theorem: Under f~!, minimal jumps of Algorithm J translate to

tree rotations, i.e., we obtain a rotation Gray code for binary trees
(< HP on associahedron).

= [Lucas, Roelants van Baronaigien, Ruskey 93]



Binary trees

e Label vertices with 1,...,n according to search tree property:
for any vertex i, we have L(7) < i < R(7)

6T
e T, := binary (search) trees with n vertices (5)  [9)
Theorem frawoe: There is a bijection f 2} @0
between T, and S,,(231). SV ORI

3
f(I) = (r(T), L(T), R(T))
‘preorder traversal’ f(T) = (6,5,2,1,4,3,9,7,8,10)
e 5, (231) is a zigzag language, so Algorithm J applies

Theorem: Under f~!, minimal jumps of Algorithm J translate to

tree rotations, i.e., we obtain a rotation Gray code for binary trees
(< HP on associahedron). 00 -— 06
= [Lucas, Roelants van Baronaigien, Ruskey 93] A

A



Patterns in binary trees

pattern tree host tree

ERE



Patterns in binary trees

pattern tree host tree

P gT

T’ contains P




Patterns in binary trees

pattern tree host tree

P T T’
T
T’ avoids P

T’ contains P




Patterns in binary trees

pattern tree host tree
P

contiguous
[Rowland 10]

T contams P
T’ avoids P



Patterns in binary trees

pattern tree host tree

. P T I
contiguous
[Rowland 10]
1" contains P |
T’ avoids P
non-contiguous p T
[Dairyko, Tyner, Pudwell, Wynn 12] ./
@ ©

T contains P



Patterns in binary trees

pattern tree host tree
P T T’

contiguous
[Rowland 10]

1" contains P |
T’ avoids P
non-contiguous p T T’
[Dairyko, Tyner, Pudwell, Wynn 12] ./
@-_©®

\ T’ avoids P

T contains P



Mixed tree patterns

1
mixed (new) .ﬁi

T contains P



Mixed tree patterns

P T T’
mixed (new) .{'
<
T’ avoids P

T contains P



Mixed tree patterns

P T T’
mixed (new) {
<
T’ avoids P

T contains P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern 7(P) = (f(P),C) such that f : T,(P) —
Sn(231,7(P)) is a bijection.



Mixed tree patterns

T/
mixed (new) //
\
"o
T’ avoids P
1" contains P

Theorem: For every (mixed) tree pattern, there is a permutation

mesh pattern 7(P) = (f(P),C) such that f : T,(P) —
Sn(231,7(P)) is a bijection.

® generalizes reSU|t Of [Pudwell, Scholten, Schrock, Serrato 14]



Mixed tree patterns

T/
mixed (new) //
\
"o
T’ avoids P
1" contains P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern 7(P) = (f(P),C) such that f : T,(P) —
Sn(231,7(P)) is a bijection.

® generalizes reSU|t Of [Pudwell, Scholten, Schrock, Serrato 14]

e classified all tree patterns on < 5 vertices; interesting bijections
to pattern-avoiding lattice paths and set partitions



Tame patterns

e A pattern P is tame, if the largest node is
neither root nor leaf, and the right branch from
the root is non-contiguous




Tame patterns

e A pattern P is tame, if the largest node is
neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If Py, ..., P, are tame patterns, then
f(T,(Py,...,P)) is a zigzag language. Under f—1,
minimal jumps of Algorithm J translate to sequences of rotations.



Tame patterns

e A pattern P is tame, if the largest node is
neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If Py, ..., P, are tame patterns, then
f(T,(Py,...,P)) is a zigzag language. Under f—1,
minimal jumps of Algorithm J translate to sequences of rotations.

— see www.combos.org/btree



Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet




Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

v




Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

v X




Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

v X

e ‘combinatorial’ equivalence: only incidences between rectan-
gles matter



Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

e ‘combinatorial’ equivalence: only incidences between rectan-
gles matter




Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

e ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

e R, := set of all rectangulations with n rectangles



Generic rectangulations

e Generic rectangulation: subdivision of a square into n
rectangles s.t. no four rectangles meet

e ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

e R, := set of all rectangulations with n rectangles

- g I O S




Generic rectangulations

Theorem (reading 1212 There is a bijection f between R, and
Sn(35124,35142,24513,42513) (2-clumped permutations).



Generic rectangulations

Theorem (reading 1212 There is a bijection f between R, and
Sn(35124,35142,24513,42513) (2-clumped permutations).

AN /
A

Is a zigzag language, so Algorithm J applies




Generic rectangulations

Theorem (reading 1212 There is a bijection f between R, and
Sn(35124,35142,24513,42513) (2-clumped permutations).

AN /
A

Is a zigzag language, so Algorithm J applies

Theorem: Under =1, minimal jumps of Algorithm J translate to

rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (<— HC on quotientope).



Generic rectangulations

Theorem [reading 1212 There is a bijection f between R, and
Sn(35124,35142,24513,42513) (2-clumped permutations).

N\

IS avzigzag language, so Algorithm J applies

Theorem: Under =1, minimal jumps of Algorithm J translate to

rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (<— HC on quotientope).

!

rectangle flips

wall slide

i e

;|



Flip Gray code

n =3

123 132 312 321 231 213

n=4

1234 1243 1423 4123 4132 1432 1342 1324 3124 3142 3412

4312 4321 3421 3241 3214 2314 2341 2431 4231 4213 2413

2143 2134




Patterns in rectangulations

e Segment: maximal sequence of inner edges




Patterns in rectangulations

e Segment: maximal sequence of inner edges

e Pattern: connected configuration of segments

P —




Patterns in rectangulations

e Segment: maximal sequence of inner edges

e Pattern: connected configuration of segments

P =

can be seen as a rectangulation itself



Patterns in rectangulations

e Segment: maximal sequence of inner edges

e Pattern: connected configuration of segments

P =

can be seen as a rectangulation itself

contains P



Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side



Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

v

o |



Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

v &

- |



Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

& & X

- | R



Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

v v X X

- | R




Tame patterns

e A pattern P is tame, if the bottom right corner rectangle does
not stretch across the whole bottom or right side

v & X X

- | R

Theorem: If Py, ..., P, are tame patterns, then
f(R,(Py,...,P)) is a zigzag language. Under f~1,
minimal jumps of Algorithm J translate to sequences of
rectangle flips.




Examples

diagonal rectangulations




Examples

) diagonal rectangulations
’ — HC on quotientope

R, (




Examples

R, ( ) diagonal rectangulations
" ’ — HC on quotientope

R,( ) area-universal rectangulations
" ! ! ? [Eppstein, Mumford, Speckmann, Verbeek 2012]




Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

) area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

R, ( , ) guillotine rectangulations




Examples

R ) diagonal rectangulations
" ’ — HC on quotientope

R ( ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]




Examples

R ) diagonal rectangulations
" ’ — HC on quotientope

R ( ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]

< HP on associahedron



Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"




Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Catalan staircases C
R (1) n
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"

— HC on hypercube



Examples

Ry ) diagonal rectangulations
" ’ — HC on quotientope

Ry ) area-universal rectangulations
n ? ? ? [Eppstein, Mumford, Speckmann, Verbeek 2012]
R, ( , ) guillotine rectangulations
Rl ) Catalan staircases  C,,
n [Downing, Einstein, Hartung, Williams 2023]
— HP on associahedron
Ry ( : ) stacked rectangulations 2"

— HC on hypercube
— see Www.combos.org/rect



Open questions

e Generating functions for mixed tree patterns?



Open questions

e Generating functions for mixed tree patterns?

e Third notion of edge type in tree patterns O\O



Open questions

e Generating functions for mixed tree patterns?

e Third notion of edge type in tree patterns O\OQ\ °..
o ©



Open questions

e Generating functions for mixed tree patterns?

e Third notion of edge type in tree patterns O\)Q\ °..
o ©

e Does every rectangulation pattern correspond to a mesh
perm Utation pattern? — [Asinowski, Cardinal, Felsner, Fusy PP23]



Open questions

Generating functions for mixed tree patterns?

Third notion of edge type in tree patterns O\)Q\ ©..
O ©

Does every rectangulation pattern correspond to a mesh

perm Utation pattern? — [Asinowski, Cardinal, Felsner, Fusy PP23]

Applications of the generation framework to other (pattern-
avoiding) combinatorial objects



Thank youl



