Efficient algorithms for generating pattern-avoiding combinatorial objects

Torsten Mütze
University of Warwick + Charles University Prague
joint work with Petr Gregor (Charles University), Elizabeth Hartung (MCLA), Hung P. Hoang (ETH Zurich), Arturo Merino (TU Berlin), Namrata (University of Warwick), Aaron Williams (Williams College)

Permutation Patterns 2023

Introduction

- many different classes of combinatorial objects

binary trees

Introduction

- many different classes of combinatorial objects

binary trees
permutations

Introduction

- many different classes of combinatorial objects

123
132
312
321
\cdots

000
001
010
011
\cdots

binary trees
permutations bitstrings

Introduction

- many different classes of combinatorial objects

binary trees

000
001
010
011
\cdots

permutations bitstrings
$\{1,2,3,4\}$
$\{1,2,3\}\{4\}$
$\{1,2\}\{3,4\}$
$\{1,2\}\{3\}\{4\}$
set partitions

Introduction

- many different classes of combinatorial objects

binary trees

permutations

bitstrings

set partitions
- fundamental tasks:
counting, sampling, optimization

Introduction

- many different classes of combinatorial objects

binary trees

permutations

bitstrings

set partitions
- fundamental tasks:
counting, sampling, optimization
+ exhaustive generation [Knuth TAOCP Vol. 4A]

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time
- consecutive objects differ by 'small amount' \rightarrow Gray code

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time
- consecutive objects differ by 'small amount' \rightarrow Gray code
- Examples:
- binary trees by rotations [Lucas, Roeannts van Baronaigien, Ruskey 93]

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time
- consecutive objects differ by 'small amount' \rightarrow Gray code
- Examples:
- binary trees by rotations [Lucas, Roeannts van Baronaigien, Ruskey 93]
- permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [Troter 62]

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time
- consecutive objects differ by 'small amount' \rightarrow Gray code
- Examples:
- binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]
- permutations by adjacent transpositions (Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [TToteter 62]
- bitstrings by bitflips (Binary reflected Gray code) [Gray 53]

Exhaustive generation

- Goal: generate all objects of a combinatorial class efficiently
- ultimately: each new object in constant time
- consecutive objects differ by 'small amount' \rightarrow Gray code
- Examples:
- binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]
- permutations by adjacent transpositions (Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [TTotere 62]
- bitstrings by bitflips (Binary reflected Gray code) [Gray 53]
- set partitions by element exchanges [Kaye 76]

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

- many flip graphs can be equipped with a poset structure and realized as polytopes

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Tamari lattice / associahedron

weak order /
permutahedron

Boolean lattice / hypercube

- many flip graphs can be equipped with a poset structure and realized as polytopes

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Tamari lattice / associahedron

weak order /
permutahedron

Boolean lattice / hypercube

- many flip graphs can be equipped with a poset structure and realized as polytopes
- exhaustive generation \hookrightarrow Hamilton path (HP)/cycle (HC)

Flip graphs, lattices \& polytopes

- Flip graph: vertices are combinatorial objects, edges capture change operations

Tamari lattice / associahedron

weak order /
permutahedron

Boolean lattice / hypercube

- many flip graphs can be equipped with a poset structure and realized as polytopes
- exhaustive generation \hookrightarrow Hamilton path (HP)/cycle (HC)

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling
- This work: a general framework for Gray code generation

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling
- This work: a general framework for Gray code generation
- Results: all aforementioned algorithms as special cases

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling
- This work: a general framework for Gray code generation
- Results: all aforementioned algorithms as special cases
+ many new results and algorithms for a multitude of other combinatorial objects and the corresponding lattices / polytopes

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling
- This work: a general framework for Gray code generation
- Results: all aforementioned algorithms as special cases
+ many new results and algorithms for a multitude of other combinatorial objects and the corresponding lattices / polytopes
+ in particular, objects defined by pattern-avoidance

Gray code generation

- many tailormade algorithms, few general approaches
[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]
- cf. generating functions for counting
- cf. Markov chains for random sampling
- This work: a general framework for Gray code generation
- Results: all aforementioned algorithms as special cases
+ many new results and algorithms for a multitude of other combinatorial objects and the corresponding lattices / polytopes + in particular, objects defined by pattern-avoidance
- Idea: Encode objects as a set $F_{n} \subseteq S_{n}$ of permutations of length n

Jumps

- Jump: = move an entry in the permutation across some neighboring smaller entries (left or right)

$$
4 \longdiv { 5 1 3 2 6 }
$$

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{lllll}
4 & 5 & 1 & 3 & 2 \\
4 & 1 & 6 & 2 & 5
\end{array}
$$

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

right jump

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

right jump

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

right jump

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

$$
\begin{array}{llllll}
4 & 5 & 1 & 3 & 2 & 6 \\
4 & 1 & 3 & 2 & 5 & 6
\end{array}
$$

Jumps

- Jump:= move an entry in the permutation across some neighboring smaller entries (left or right)

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

$$
67132458
$$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

$$
67132458
$$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

$$
67132458
$$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
- Minimal jump: no shorter jump of the same value produces a permutation in F_{n}

$$
67132458
$$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Minimal jump: no shorter jump of the same value produces
a permutation in F_{n}

$$
67132458
$$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243,1423,2134,4123,4213\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, 1423,2134,4123,4213\}$

1243

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, 1423,2134,4123,4213\}$

1243

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134,4123,4213\}$
$\stackrel{1}{243}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134,4123,4213\}$

1243
1423

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134,4123,4213\}$

1243
1423

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134,4123,4213\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134, \underline{4123}, 4213\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134, \underline{4123}, 4213\}$

1243
1423
4123

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134, \underline{4123}, \underline{4213}\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134, \underline{4123}, \underline{4213}\}$

1243
1423
4123
4213

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, \underline{2134}, \underline{4123}, \underline{4213}\}$

1243
1423
4123
4213

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, \underline{2134}, \underline{4123}, \underline{4213}\}$

1243
1423
4123
4213
2134

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, \underline{2134}, \underline{4123}, \underline{4213}\}$

1243
1423
4123
4213
2134

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243,1423,2134,4123, \underline{4213}\}$

12434213
1423
4123
4213
2134

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243,1423, \underline{2134}, 4123, \underline{4213}\}$

12434213
1423
4123
4213
2134

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243,1423, \underline{2134}, 4123, \underline{4213}\}$
$\begin{array}{ll}1243 & 4213 \\ 1423 & 2134\end{array}$
4123
4213
2134

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243,1423, \underline{2134}, 4123, \underline{4213}\}$
no jump possible

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243, \underline{1423}, 2134,4123,4213\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{\underline{1243}, \underline{1423}, 2134, \underline{4123}, 4213\}$

4213 213

1423
no jump possible

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- Example: $F_{4}=\{1243, \underline{1423}, 2134,4123,4213\}$

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.
Stop if no jump is possible or jump direction is ambiguous.
- If every permutation from F_{n} is visited, we say that Algorithm J generates F_{n} (visiting twice is impossible)

Algorithm J

Algorithm J

attempts to generate a set of permutations $F_{n} \subseteq S_{n}$

- Start with an initial permutation.
- In the current permutation, perform a minimal jump of the largest possible value, so that a previously unvisited permutation from F_{n} is created.

Stop if no jump is possible or jump direction is ambiguous.

- If every permutation from F_{n} is visited, we say that Algorithm J generates F_{n} (visiting twice is impossible)
- Question: When does Algorithm J generate F_{n} ?

Tree of permutations

- root $:=$ empty permutation ε
- given a permutation length $n-1$, its children are obtained by inserting n in every possible position

Tree of permutations

- root $:=$ empty permutation ε
- given a permutation length $n-1$, its children are obtained by inserting n in every possible position

Tree of permutations

- root $:=$ empty permutation ε
- given a permutation length $n-1$, its children are obtained by inserting n in every possible position
- symbol n at leftmost or rightmost position
- else

Tree of permutations

- root $:=$ empty permutation ε
- given a permutation length $n-1$, its children are obtained by inserting n in every possible position
- symbol n at leftmost or rightmost position
- else

Tree of permutations

- root $:=$ empty permutation ε
- given a permutation length $n-1$, its children are obtained by inserting n in every possible position
- symbol n at leftmost or rightmost position
- else

Tree of permutations

- we may prune subtrees iff their root is

Tree of permutations

- we may prune subtrees iff their root is

Tree of permutations

- we may prune subtrees iff their root is

Tree of permutations

- we may prune subtrees iff their root is

Tree of permutations

- we may prune subtrees iff their root is

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language
- Examples:
- prune nothing: $F_{n}=S_{n},\left|F_{n}\right|=n$!

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language
- Examples:
- prune nothing: $F_{n}=S_{n},\left|F_{n}\right|=n$!
- prune all green nodes:
$F_{n}=$ permutations without peaks, $\left|F_{n}\right|=2^{n-1}$

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using the identity permutation for intialization.

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using the identity permutation for intialization.

Proof: Induction over the depth of the tree. \square

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using the identity permutation for intialization.

Proof: Induction over the depth of the tree. \square

- the number of zigzag languages is enormous:

$$
\geq 2^{(n-1)!(n-2)}=2^{2^{\Theta(n \log n)}}
$$

Tree of permutations

- we may prune subtrees iff their root is
- given any such pruned tree, a set of permutation $F_{n} \subseteq S_{n}$ in depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using the identity permutation for intialization.

Proof: Induction over the depth of the tree. \square

- the number of zigzag languages is enormous:

$$
\geq 2^{(n-1)!(n-2)}=2^{2^{\Theta(n \log n)}}
$$

- many of them encode interesting combinatorial objects

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$$
\begin{aligned}
& 1234 \\
& 1243 \\
& 1423 \\
& 4123 \\
& 4132 \\
& 1432 \\
& 1342 \\
& 1324 \\
& 3124 \\
& 3142 \\
& 3412 \\
& 4312 \\
& 4321 \\
& 3421 \\
& 3241 \\
& 3214 \\
& 2314 \\
& 2341 \\
& 2431 \\
& 4231 \\
& 4213 \\
& 2413 \\
& 2143 \\
& 2134
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n! \\
& \begin{array}{l}
1234 \\
1243 \\
1423 \\
4123 \\
4132 \\
1432 \\
1342 \\
1324 \\
3124 \\
3142 \\
3412 \\
4312 \\
4321 \\
3421 \\
3241 \\
3214 \\
2314 \\
2341 \\
2431 \\
4231 \\
4213 \\
2413 \\
2143 \\
2134
\end{array}
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

$$
x_{i}= \begin{cases}0 & i \text { right of smaller entries } \\ 1 & i \text { left of smaller entries }\end{cases}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

$$
\begin{aligned}
& \\
& \\
& 1234 \\
& 4123 \\
& 4312 \\
& 3124 \\
& 3214 \\
& 4321 \\
& 4213 \\
& 2134
\end{aligned} \quad \begin{aligned}
& 234 \\
& 0000 \\
& 001 \\
& 011 \\
& 0110 \\
& 110 \\
& 111 \\
& 101 \\
& 100
\end{aligned}
$$

$$
x_{i}= \begin{cases}0 & i \text { right of smaller entries } \\ 1 & i \text { left of smaller entries }\end{cases}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron

Examples

$$
\begin{aligned}
& F_{n}=S_{n} \\
& \left|F_{n}\right|=n!
\end{aligned}
$$

Steinhaus-Johnson-Trotter! minimal jumps
\leftrightarrow adjacent transpositions
$\hookrightarrow \mathrm{HC}$ on permutahedron
$F_{n}=$ permutations without peaks

$$
\left|F_{n}\right|=2^{n-1}
$$

$$
\begin{array}{lll}
& & \mathbf{2 3 4} \\
1234 \\
4123 \\
4312 \\
3124 & 000 \\
3214 & 001 \\
4321 \\
4213 & 011 \\
2134 & 010 \\
& 110 \\
110 \\
1010
\end{array}
$$

$$
x_{i}= \begin{cases}0 & i \text { right of smaller entries } \\ 1 & i \text { left of smaller entries }\end{cases}
$$

Binary reflected Gray code! minimal jumps \leftrightarrow bitflips $\hookrightarrow \mathrm{HC}$ on hypercube

General approach

Combinatorial objects

General approach

| Set of |
| :--- | :--- |
| permutations |
| $F_{n} \subseteq S_{n}$ |\quad| Combinatorial |
| :--- |
| objects |

General approach

- run Algorithm J

$$
\text { List }=\text { Algo } \mathrm{J}\left(F_{n}\right)
$$

General approach

\(\left.\begin{array}{|l|l|}\hline Set of

permutations

F_{n} \subseteq S_{n}\end{array}\right] \quad\)| Combinatorial |
| :--- |
| objects |

- run Algorithm J

List $=$ Algo $\mathrm{J}\left(F_{n}\right) \longrightarrow f^{-1}($ List $)$

General approach

| Set of |
| :--- | :--- |
| permutations |
| $F_{n} \subseteq S_{n}$ |$|$| Combinatorial |
| :--- |
| objects |

- run Algorithm J

$$
\text { List }=\text { Algo } \mathrm{J}\left(F_{n}\right) \longrightarrow f^{-1}(\text { List })
$$

- interpret Algorithm J under the bijection Algo J

General approach

Set of
permutations
$F_{n} \subseteq S_{n}$

- run Algorithm J

$$
\text { List }=\text { Algo } J\left(F_{n}\right) \longrightarrow f^{-1}(\text { List })
$$

- interpret Algorithm J under the bijection

$$
\text { Algo J } \longrightarrow f^{-1}(\text { Algo J })
$$

General approach

$$
\begin{array}{|l|}
\hline \text { Set of } \\
\text { permutations } \\
F_{n} \subseteq S_{n} \\
\hline
\end{array}
$$

Combinatorial objects

- run Algorithm J

$$
\text { List }=\text { Algo } \mathrm{J}\left(F_{n}\right) \longrightarrow f^{-1}(\text { List })
$$

- interpret Algorithm J under the bijection

Algo J $\longrightarrow f^{-1}$ (Algo J)

- minimal jumps \longrightarrow 'small changes'

General approach

> | Set of |
| :--- |
| permutations |
| $F_{n} \subseteq S_{n}$ |

Combinatorial objects

- run Algorithm J

$$
\text { List }=\text { Algo } \mathrm{J}\left(F_{n}\right) \longrightarrow f^{-1}(\text { List })
$$

- interpret Algorithm J under the bijection

$$
\text { Algo J } \longrightarrow f^{-1}(\text { Algo J) }
$$

- minimal jumps \rightarrow 'small changes'
\hookrightarrow walks on lattices / polytopes

Efficient algorithms

- greedy algorithm as stated very inefficient (store and look-up exponentially many previous permutations)

Efficient algorithms

- greedy algorithm as stated very inefficient (store and look-up exponentially many previous permutations)
- can make it history-free (no look-up needed)

Efficient algorithms

- greedy algorithm as stated very inefficient (store and look-up exponentially many previous permutations)
- can make it history-free (no look-up needed)
- running time in each step governed by membership tests in F_{n}; typically F_{n} not given explicitly, but by properties (e.g., 'peak-free' or '231-avoiding')

Efficient algorithms

- greedy algorithm as stated very inefficient (store and look-up exponentially many previous permutations)
- can make it history-free (no look-up needed)
- running time in each step governed by membership tests in F_{n}; typically F_{n} not given explicitly, but by properties (e.g., 'peak-free' or '231-avoiding')
- in many cases polynomial-time algorithms for concrete objects, sometimes even loopless

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]
- VI. pattern-avoiding binary trees

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]
- III. pattern-avoiding rectangulations [socG'21]
- VI. pattern-avoiding binary trees

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [sood'20]
- II. lattice congruences of the weak order on S_{n}
- III. pattern-avoiding rectangulations [soCG21]
- VI. pattern-avoiding binary trees

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]
- II. lattice congruences of the weak order on S_{n}
- III. pattern-avoiding rectangulations [SocG'21]
- IV. elimination trees [soda'22]
- VI. pattern-avoiding binary trees

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]
- II. lattice congruences of the weak order on S_{n}
- III. pattern-avoiding rectangulations [soCG21]
- IV. elimination trees [soda'2z]
- V. acyclic orientations of graphs [soda'23]
- VI. pattern-avoiding binary trees

Applications

- I. pattern-avoiding permutations (classical/vincular/ mesh patterns, monotone and geometric grid classes) [soda'20]
- II. Iattice congruences of the weak order on S_{n}
- III. pattern-avoiding rectangulations [socG'21]
- |V. elimination trees [soda'22]
- V. acyclic orientations of graphs [soda'23]
- VI. pattern-avoiding binary trees

Pattern-avoiding permutations

- $S_{n}\left(\tau_{1}, \ldots, \tau_{k}\right) \subseteq S_{n}:=$ set of permutations avoiding each of the patterns $\tau_{1}, \ldots, \tau_{k}$

Pattern-avoiding permutations

- A pattern τ is tame, if

Pattern-avoiding permutations

- A pattern τ is tame, if classical: largest entry not at the boundary

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
24130
$$

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
24130 \quad 4213
$$

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry 2413

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry 24130
$\underline{2413}$

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry 24130
$\underline{2413}$

2413

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry 24130
$\underline{2413}$

2413
$\underline{24} 13$

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
24130 \quad 4213
$$

vincular: + one vincular pair involving the largest entry

$$
\begin{aligned}
& 2413 \\
& 2413
\end{aligned}
$$

$$
\begin{aligned}
& 2413 \\
& \underline{2413} \\
& \hline
\end{aligned}
$$

mesh: + no shaded cell in the top row

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry

$$
\begin{aligned}
& 24130 \\
& \underline{2413} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 2413 \\
& \underline{24} 13
\end{aligned}
$$

mesh: + no shaded cell in the top row

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry

$$
\begin{aligned}
& 24130 \\
& \underline{2413} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 2413 \\
& \underline{24} 13
\end{aligned}
$$

mesh: + no shaded cell in the top row

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry

$$
\begin{aligned}
& 24130 \\
& \underline{2413} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 2413 \\
& \underline{24} 13 \\
& \hline
\end{aligned}
$$

mesh: + no shaded cell in the top row

Pattern-avoiding permutations

- A pattern τ is tame, if
classical: largest entry not at the boundary

$$
2413 \bigcirc \quad 4213
$$

vincular: + one vincular pair involving the largest entry

$$
\begin{aligned}
& 2413 \\
& \underline{2413}
\end{aligned}
$$

$$
\begin{aligned}
& 2413 \\
& 2413 \\
& \hline
\end{aligned}
$$

mesh: + no shaded cell in the top row

Theorem: If $\tau_{1}, \ldots, \tau_{k}$ are tame patterns, then $S_{n}\left(\tau_{1}, \ldots, \tau_{k}\right)$ is a zigzag language.

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects
231
Catalan families

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects
231
Catalan families - binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects
231
Catalan families - binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips
$\underline{231}$
Bell families

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
Catalan families - binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips
$\underline{231}$
Bell families
- set partitions by element exchanges

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
Catalan families • binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips
$\underline{231}$
Bell families
231,132
- set partitions by element exchanges
- bitstrings by flips (BRGC)

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
Catalan families - binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips
$\underline{231}$
Bell families
231,132
2413,3142
- set partitions by element exchanges
- bitstrings by flips (BRGC)

Baxter families

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
$\underline{231}$
231,132
2413,3142

Catalan families

- binary trees by rotations
- triangulations by flips
- Dyck paths by hill flips

Bell families

Baxter families

- set partitions by element exchanges
- bitstrings by flips (BRGC)
- diagonal rectangulations

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
Catalan families

- binary trees by rotations
- triangulations by flips
- Dyck paths by hill flips
- set partitions by element exchanges
- bitstrings by flips (BRGC)
- diagonal rectangulations

35124,35142 , 2-clumped pms.
24513,42513

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
Catalan families

- binary trees by rotations
- triangulations by flips
- Dyck paths by hill flips
- set partitions by element exchanges
- bitstrings by flips (BRGC)
- diagonal rectangulations
- generic rectangulations 24513,42513

Pattern-avoiding permutations

Tame patterns $\stackrel{f}{\longleftrightarrow}$ Combinatorial objects

231
$\underline{231}$
Bell families
231,132
2413,3142 Baxter families
35124,35142, 2-clumped pms. 24513,42513

Catalan families - binary trees by rotations

- triangulations by flips
- Dyck paths by hill flips
- set partitions by element exchanges
- bitstrings by flips (BRGC)
- diagonal rectangulations
- generic rectangulations

Grid classes

- monotone grid class $\operatorname{Grid}_{n}(M)$ [Huczynska, Vatter 06]
- geometric grid class $\mathrm{Geo}_{n}(M)$ [Albert et al. 13]

Grid classes

- monotone grid class $\operatorname{Grid}_{n}(M)$ [Huczynska, vatter 06]
- geometric grid class $\mathrm{GeO}_{n}(M)$ [Albert et al. 13]

Theorem: If $M=\square$, then both $\operatorname{Grid}_{n}(M)$ and $\operatorname{Geo}_{n}(M)$ are zigzag languages.

Binary trees

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
\begin{aligned}
& f(T):=(r(T), L(T), R(T)) \\
& \text { 'preorder traversal' }
\end{aligned}
$$

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
f(T):=\underset{ }{(} \underset{\text { 'preorder traversal' }}{(r(T), L(T), R(T))} \quad f(T)=(6,5,2,1,4,3,9,7,8,10)
$$

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
f(T):=\underset{ }{(} \underset{\text { 'preorder traversal' }}{(r(T), L(T), R(T))} \quad f(T)=(6,5,2,1,4,3,9,7,8,10)
$$

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
f(T):=\underset{ }{(\underset{\text { 'preorder traversal' }}{(r(T), L(T), R(T))} \quad f(T)=(6,5,2,1,4,3,9,7,8,10)}
$$

- $S_{n}(231)$ is a zigzag language, so Algorithm J applies

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
f(T):=(r(T), L(T), R(T))
$$

$$
\text { 'preorder traversal' } \quad f(T)=(6,5,2,1,4,3,9,7,8,10)
$$

- $S_{n}(231)$ is a zigzag language, so Algorithm J applies

Theorem: Under f^{-1}, minimal jumps of Algorithm J translate to tree rotations, i.e., we obtain a rotation Gray code for binary trees ($\hookrightarrow \mathrm{HP}$ on associahedron).
$=$ [Lucas, Roelants van Baronaigien, Ruskey 93]

Binary trees

- Label vertices with $1, \ldots, n$ according to search tree property: for any vertex i, we have $L(i)<i<R(i)$
- $T_{n}:=$ binary (search) trees with n vertices

Theorem [Fokkore]: There is a bijection f between T_{n} and $S_{n}(231)$.

$$
f(T):=(r(T), L(T), R(T))
$$

$$
\text { 'preorder traversal' } f(T)=(6,5,2,1,4,3,9,7,8,10)
$$

- $S_{n}(231)$ is a zigzag language, so Algorithm J applies

Theorem: Under f^{-1}, minimal jumps of Algorithm J translate to tree rotations, i.e., we obtain a rotation Gray code for binary trees ($\hookrightarrow \mathrm{HP}$ on associahedron).
$=$ [Lucas, Roelants van Baronaigien, Ruskey 93]

Patterns in binary trees

pattern tree host tree

Patterns in binary trees

 pattern tree host tree

Patterns in binary trees

 pattern tree host tree

Patterns in binary trees

 pattern tree host tree
contiguous

[Rowland 10]

Patterns in binary trees

pattern tree host tree

contiguous

[Rowland 10]

non-contiguous

[Dairyko, Tyner, Pudwell, Wynn 12]

Patterns in binary trees

pattern tree host tree

contiguous

[Rowland 10]

non-contiguous

[Dairyko, Tyner, Pudwell, Wynn 12]

T contains P

Mixed tree patterns

mixed (new)

Mixed tree patterns

mixed (new)

Mixed tree patterns

mixed (new)

Theorem: For every (mixed) tree pattern, there is a permutation mesh pattern $\tau(P)=(f(P), C)$ such that $f: T_{n}(P) \rightarrow$ $S_{n}(231, \tau(P))$ is a bijection.

Mixed tree patterns

mixed (new)

Theorem: For every (mixed) tree pattern, there is a permutation mesh pattern $\tau(P)=(f(P), C)$ such that $f: T_{n}(P) \rightarrow$ $S_{n}(231, \tau(P))$ is a bijection.

- generalizes result of [Pudwell, Scholten, Schrock, Serrato 14]

Mixed tree patterns

mixed (new)

Theorem: For every (mixed) tree pattern, there is a permutation mesh pattern $\tau(P)=(f(P), C)$ such that $f: T_{n}(P) \rightarrow$ $S_{n}(231, \tau(P))$ is a bijection.

- generalizes result of [Pudwell, Scholten, Schrock, Serrato 14]
- classified all tree patterns on ≤ 5 vertices; interesting bijections to pattern-avoiding lattice paths and set partitions

Tame patterns

- A pattern P is tame, if the largest node is neither root nor leaf, and the right branch from the root is non-contiguous

Tame patterns

- A pattern P is tame, if the largest node is neither root nor leaf, and the right branch from the root is non-contiguous

Theorem: If P_{1}, \ldots, P_{k} are tame patterns, then $f\left(T_{n}\left(P_{1}, \ldots, P_{k}\right)\right)$ is a zigzag language. Under f^{-1}, minimal jumps of Algorithm J translate to sequences of rotations.

Tame patterns

- A pattern P is tame, if the largest node is neither root nor leaf, and the right branch from the root is non-contiguous

Theorem: If P_{1}, \ldots, P_{k} are tame patterns, then $f\left(T_{n}\left(P_{1}, \ldots, P_{k}\right)\right)$ is a zigzag language. Under f^{-1}, minimal jumps of Algorithm J translate to sequences of rotations.
\rightarrow see www. combos.org/btree

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

- 'combinatorial' equivalence: only incidences between rectangles matter

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

- 'combinatorial' equivalence: only incidences between rectangles matter

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

- 'combinatorial' equivalence: only incidences between rectangles matter
- $R_{n}:=$ set of all rectangulations with n rectangles

Generic rectangulations

- Generic rectangulation: subdivision of a square into n rectangles s.t. no four rectangles meet

- 'combinatorial' equivalence: only incidences between rectangles matter
- $R_{n}:=$ set of all rectangulations with n rectangles

Generic rectangulations

Theorem [Reading 12]: There is a bijection f between R_{n} and $S_{n}(3 \underline{5124}, 3 \underline{5142,24 \underline{513}, 42 \underline{513}) \text { (2-clumped permutations). }}$

Generic rectangulations

Theorem [Reading 12]: There is a bijection f between R_{n} and $S_{n}(3 \underline{5124}, 3 \underline{142}, 24 \underline{513}, 42 \underline{513})$ (2-clumped permutations). is a zigzag language, so Algorithm J applies

Generic rectangulations

Theorem [Reading 12]: There is a bijection f between R_{n} and $S_{n}(3 \underline{5124}, 3 \underline{5142}, 24 \underline{513}, 42 \underline{513})$ (2-clumped permutations).
is a zigzag language, so Algorithm J applies
Theorem: Under f^{-1}, minimal jumps of Algorithm J translate to rectangle flips, i.e., we obtain a flip Gray code for generic rectangulations ($\hookrightarrow \mathrm{HC}$ on quotientope).

Generic rectangulations

Theorem [Reading 12]: There is a bijection f between R_{n} and $S_{n}(3 \underline{5124}, 3 \underline{5142,24 \underline{513}, 42 \underline{513}) \text { (2-clumped permutations). }}$
is a zigzag language, so Algorithm J applies
Theorem: Under f^{-1}, minimal jumps of Algorithm J translate to rectangle flips, i.e., we obtain a flip Gray code for generic rectangulations ($\hookrightarrow \mathrm{HC}$ on quotientope).
rectangle flips

Flip Gray code

$$
n=3
$$

$$
n=4
$$

Patterns in rectangulations

- Segment: maximal sequence of inner edges

Patterns in rectangulations

- Segment: maximal sequence of inner edges

- Pattern: connected configuration of segments

Patterns in rectangulations

- Segment: maximal sequence of inner edges

- Pattern: connected configuration of segments

can be seen as a rectangulation itself

Patterns in rectangulations

- Segment: maximal sequence of inner edges

- Pattern: connected configuration of segments

contains P

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Tame patterns

- A pattern P is tame, if the bottom right corner rectangle does not stretch across the whole bottom or right side

Theorem: If P_{1}, \ldots, P_{k} are tame patterns, then $f\left(R_{n}\left(P_{1}, \ldots, P_{k}\right)\right)$ is a zigzag language. Under f^{-1}, minimal jumps of Algorithm J translate to sequences of rectangle flips.

Examples

diagonal rectangulations

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope
 area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope
 area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

guillotine rectangulations

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

[Eppstein, Mumford, Speckmann, Verbeek 2012]

guillotine rectangulations

Catalan staircases C_{n}

[Downing, Einstein, Hartung, Williams 2023]

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

[Eppstein, Mumford, Speckmann, Verbeek 2012]

Catalan staircases C_{n}

[Downing, Einstein, Hartung, Williams 2023]
$\hookrightarrow \mathrm{HP}$ on associahedron

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

[Eppstein, Mumford, Speckmann, Verbeek 2012]

guillotine rectangulations

Catalan staircases C_{n}

[Downing, Einstein, Hartung, Williams 2023]
$\hookrightarrow \mathrm{HP}$ on associahedron

stacked rectangulations

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

[Eppstein, Mumford, Speckmann, Verbeek 2012]

Catalan staircases $\quad C_{n}$

[Downing, Einstein, Hartung, Williams 2023]
$\hookrightarrow \mathrm{HP}$ on associahedron

stacked rectangulations 2^{n}
$\hookrightarrow \mathrm{HC}$ on hypercube

Examples

diagonal rectangulations $\hookrightarrow \mathrm{HC}$ on quotientope

[Eppstein, Mumford, Speckmann, Verbeek 2012]

Catalan staircases C_{n}

[Downing, Einstein, Hartung, Williams 2023]
$\hookrightarrow \mathrm{HP}$ on associahedron
stacked rectangulations 2^{n}
$\hookrightarrow \mathrm{HC}$ on hypercube
\rightarrow see www.combos.org/rect

Open questions

- Generating functions for mixed tree patterns?

Open questions

- Generating functions for mixed tree patterns?
- Third notion of edge type in tree patterns

Open questions

- Generating functions for mixed tree patterns?
- Third notion of edge type in tree patterns 0_{0}^{0}

Open questions

- Generating functions for mixed tree patterns?
- Third notion of edge type in tree patterns 0_{0}^{0}
- Does every rectangulation pattern correspond to a mesh permutation pattern? \rightarrow [Asinowski, Cardinal, Felsner, Fusy PP23]

Open questions

- Generating functions for mixed tree patterns?
- Third notion of edge type in tree patterns 0_{0}^{0}
- Does every rectangulation pattern correspond to a mesh permutation pattern? \rightarrow Asinowski, Cardinal, Felsner, Fusy Pp23]
- Applications of the generation framework to other (patternavoiding) combinatorial objects

Thank you!

