
joint work with Petr Gregor (Charles University), Elizabeth Hartung (MCLA), Hung P. Hoang (ETH Zurich),
Arturo Merino (TU Berlin), Namrata (University of Warwick), Aaron Williams (Williams College)

Efficient algorithms for generating
pattern-avoiding combinatorial objects

Torsten Mütze

University of Warwick + Charles University Prague

Permutation Patterns 2023

Introduction
• many different classes of combinatorial objects

binary trees

. . .

Introduction
• many different classes of combinatorial objects

123
132
312

. . .

permutationsbinary trees

321
. . .

Introduction
• many different classes of combinatorial objects

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

Introduction
• many different classes of combinatorial objects

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

set partitions

{1, 2, 3, 4}
{1, 2, 3}{4}
{1, 2}{3, 4}
{1, 2}{3}{4}
. . .

Introduction
• many different classes of combinatorial objects

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

set partitions

{1, 2, 3, 4}
{1, 2, 3}{4}
{1, 2}{3, 4}
{1, 2}{3}{4}
. . .

• fundamental tasks:
counting, sampling, optimization

Introduction
• many different classes of combinatorial objects

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

set partitions

{1, 2, 3, 4}
{1, 2, 3}{4}
{1, 2}{3, 4}
{1, 2}{3}{4}
. . .

• fundamental tasks:
counting, sampling, optimization

+ exhaustive generation [Knuth TAOCP Vol. 4A]

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• ultimately: each new object in constant time

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

• Examples:

binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

• Examples:

binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [Trotter 62]

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

• Examples:

binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [Trotter 62]

bitstrings by bitflips (Binary reflected Gray code) [Gray 53]

Exhaustive generation
• Goal: generate all objects of a combinatorial class efficiently

• consecutive objects differ by ‘small amount’ → Gray code

• ultimately: each new object in constant time

• Examples:

binary trees by rotations [Lucas, Roelants van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm) [Johnson 64], [Trotter 62]

bitstrings by bitflips (Binary reflected Gray code) [Gray 53]

set partitions by element exchanges [Kaye 76]

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• many flip graphs can be equipped with a poset structure and
realized as polytopes

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

Tamari lattice /
associahedron

weak order /
permutahedron

Boolean lattice /
hypercube

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• many flip graphs can be equipped with a poset structure and
realized as polytopes

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

Tamari lattice /
associahedron

weak order /
permutahedron

Boolean lattice /
hypercube

• exhaustive generation ↪→ Hamilton path (HP)/cycle (HC)

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• many flip graphs can be equipped with a poset structure and
realized as polytopes

Flip graphs, lattices & polytopes
• Flip graph: vertices are combinatorial objects, edges capture

change operations

Tamari lattice /
associahedron

weak order /
permutahedron

Boolean lattice /
hypercube

• exhaustive generation ↪→ Hamilton path (HP)/cycle (HC)

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• many flip graphs can be equipped with a poset structure and
realized as polytopes

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

• Results: all aforementioned algorithms as special cases

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

• Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

• Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes

+ in particular, objects defined by pattern-avoidance

Gray code generation
• many tailormade algorithms, few general approaches

[Avis, Fukuda 96], [Barcucci et al. 99], [Li, Sawada 09], [Ruskey, Sawada, Williams 12], [Williams 13]

cf. generating functions for counting

cf. Markov chains for random sampling

• This work: a general framework for Gray code generation

• Results: all aforementioned algorithms as special cases

+ many new results and algorithms for a multitude of other
combinatorial objects and the corresponding lattices / polytopes

• Idea: Encode objects as a set Fn ⊆ Sn of permutations of
length n

+ in particular, objects defined by pattern-avoidance

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

right jump

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

right jump

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

right jump

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

left jump

Jumps
• Jump:= move an entry in the permutation across some

neighboring smaller entries (left or right)

4 5 1 3 2 6
4 51 3 2 6

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

87 1 3 26 4 5

• Minimal jump: no shorter jump of the same value produces
a permutation in Fn

Stop if no jump is possible or jump direction is ambiguous.

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

12 3

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 3

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
14234

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
14234

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
142341

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3
41

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3
41
12

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3
41
12
142 3

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3

41
12

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

14 32

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

14 3214 32

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

1 432
14 3214 32

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

1 432
14 3214 32

no jump possible

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

1 432
14 3214 32

no jump possible

4 321 3

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

1 432
14 3214 32

no jump possible

4 3214 321

21

4

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• Example: F4 = {1243, 1423, 2134, 4123, 4213}

1 42 32
1423
4 3

142 3
1 42 3

41
12

1 432
14 3214 32

no jump possible
direction ambiguous
4 3214 321

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• If every permutation from Fn is visited, we say that Algorithm J
generates Fn (visiting twice is impossible)

Algorithm J

• Start with an initial permutation.

Algorithm J
attempts to generate a set of permutations Fn ⊆ Sn

• In the current permutation, perform a minimal jump of
the largest possible value, so that a previously unvisited
permutation from Fn is created.

Stop if no jump is possible or jump direction is ambiguous.

• If every permutation from Fn is visited, we say that Algorithm J
generates Fn (visiting twice is impossible)

• Question: When does Algorithm J generate Fn?

Tree of permutations

231

1

2112

ε

123 312 321 213132

• root := empty permutation ε

• given a permutation length n− 1, its children are obtained by
inserting n in every possible position

...

Tree of permutations

231

1

2112

ε

123 312 321 213132

• root := empty permutation ε

• given a permutation length n− 1, its children are obtained by
inserting n in every possible position

...

depth n =
all permutations
of length n

Tree of permutations

231

1

2112

ε

123 312 321 213132

• root := empty permutation ε

• given a permutation length n− 1, its children are obtained by
inserting n in every possible position

...

depth n =
all permutations
of length n

symbol n at leftmost or
rightmost position
else

Tree of permutations

231

1

2112

ε

123 312 321 213132

• root := empty permutation ε

• given a permutation length n− 1, its children are obtained by
inserting n in every possible position

...

depth n =
all permutations
of length n

symbol n at leftmost or
rightmost position
else

Tree of permutations

231

1

2112

ε

123 312 321 213132

• root := empty permutation ε

• given a permutation length n− 1, its children are obtained by
inserting n in every possible position

...

depth n =
all permutations
of length n

symbol n at leftmost or
rightmost position
else

Tree of permutations
• we may prune subtrees iff their root is

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

• Examples:

prune nothing: Fn = Sn, |Fn| = n!

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

231

1

2112

ε

123 312 321 213132

...

• Examples:

prune nothing: Fn = Sn, |Fn| = n!

prune all green nodes:
Fn = permutations
without peaks,
|Fn| = 2n−1

prune nothing: Fn = Sn, |Fn| = n!

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree.

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree.

• the number of zigzag languages is enormous:

≥ 2(n−1)!(n−2) = 22
Θ(n log n)

Tree of permutations
• we may prune subtrees iff their root is

• given any such pruned tree, a set of permutation Fn ⊆ Sn in
depth n is called zigzag language

Theorem: Algorithm J generates any zigzag language, using
the identity permutation for intialization.

Proof: Induction over the depth of the tree.

• the number of zigzag languages is enormous:

≥ 2(n−1)!(n−2) = 22
Θ(n log n)

• many of them encode interesting combinatorial objects

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!
minimal jumps

adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps
adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps

not a sublist

adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps
adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps

xi =

{
0 i right of smaller entries

1 i left of smaller entries

423

f

adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps

xi =

{
0 i right of smaller entries

1 i left of smaller entries

423
0
1
1
0
0
1
1
0

f

adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps

xi =

{
0 i right of smaller entries

1 i left of smaller entries

423
000
001
011
010
110
111

101
100

f

adjacent transpositions

↪→ HC on permutahedron

Examples
Fn = Sn

|Fn| = n!

Fn = permutations
without peaks
|Fn| = 2n−1

1 423
1 42 3
1423
14 23
14 23

1 23
1 23
1 23

4
4
4

123 4
1 23
123
123

4
4

4

123
123

123

4
4
4

123 4
123
12 3
123

4
4

4
12 3
12 3

12 3
12 3

1234

4
4
4
4

Steinhaus-Johnson-Trotter! Binary reflected Gray code!

1 423
14 23
1234

123 4
123 4
1234

12 34
12 34

minimal jumps bitflips

xi =

{
0 i right of smaller entries

1 i left of smaller entries

423
000
001
011
010
110
111

101
100

f

adjacent transpositions
minimal jumps

↪→ HC on permutahedron
↪→ HC on hypercube

General approach
Combinatorial
objects

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

f

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

f

List = Algo J(Fn)

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

f

List = Algo J(Fn) f−1(List)

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

• interpret Algorithm J under the bijection

f

List = Algo J(Fn) f−1(List)

Algo J

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

• interpret Algorithm J under the bijection

f

List = Algo J(Fn) f−1(List)

Algo J f−1(Algo J)

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

• interpret Algorithm J under the bijection

f

List = Algo J(Fn) f−1(List)

Algo J f−1(Algo J)

• minimal jumps ‘small changes’

General approach
Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

• run Algorithm J

• interpret Algorithm J under the bijection

f

List = Algo J(Fn) f−1(List)

Algo J f−1(Algo J)

• minimal jumps ‘small changes’
↪→ walks on lattices / polytopes

Efficient algorithms
• greedy algorithm as stated very inefficient (store and look-up

exponentially many previous permutations)

Efficient algorithms
• greedy algorithm as stated very inefficient (store and look-up

exponentially many previous permutations)

• can make it history-free (no look-up needed)

Efficient algorithms
• greedy algorithm as stated very inefficient (store and look-up

exponentially many previous permutations)

• can make it history-free (no look-up needed)

• running time in each step governed by membership tests in
Fn; typically Fn not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)

Efficient algorithms
• greedy algorithm as stated very inefficient (store and look-up

exponentially many previous permutations)

• can make it history-free (no look-up needed)

• running time in each step governed by membership tests in
Fn; typically Fn not given explicitly, but by properties (e.g.,
‘peak-free’ or ‘231-avoiding’)

• in many cases polynomial-time algorithms for concrete
objects, sometimes even loopless

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• VI. pattern-avoiding binary trees

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• II. lattice congruences of the weak order on Sn

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• II. lattice congruences of the weak order on Sn

• IV. elimination trees [SODA’22]

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• II. lattice congruences of the weak order on Sn

• V. acyclic orientations of graphs [SODA’23]

• IV. elimination trees [SODA’22]

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]

Applications
• I. pattern-avoiding permutations (classical/vincular/

mesh patterns, monotone and geometric grid classes) [SODA’20]

• II. lattice congruences of the weak order on Sn

• V. acyclic orientations of graphs [SODA’23]

• IV. elimination trees [SODA’22]

• VI. pattern-avoiding binary trees

• III. pattern-avoiding rectangulations [SoCG’21]

Pattern-avoiding permutations
• Sn(τ1, . . . , τk) ⊆ Sn := set of permutations avoiding each of

the patterns τ1, . . . , τk

Pattern-avoiding permutations
• A pattern τ is tame, if

Pattern-avoiding permutations
• A pattern τ is tame, if

classical: largest entry not at the boundary

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

1

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

1 2 34 1

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

mesh: + no shaded cell in the top row

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

mesh: + no shaded cell in the top row

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

mesh: + no shaded cell in the top row

Pattern-avoiding permutations
• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

mesh: + no shaded cell in the top row

Pattern-avoiding permutations

Theorem: If τ1, . . . , τk are tame patterns, then Sn(τ1, . . . , τk)
is a zigzag language.

• A pattern τ is tame, if

2 34
classical: largest entry not at the boundary

vincular: + one vincular pair involving the largest entry
1 2 34 1

2 341
2 341

2 341
2 341

mesh: + no shaded cell in the top row

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123 Catalan families

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123 Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

• bitstrings by flips (BRGC)

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families

• bitstrings by flips (BRGC)

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families • diagonal rectangulations

• bitstrings by flips (BRGC)

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families • diagonal rectangulations

• bitstrings by flips (BRGC)

135 2 5 413 2-clumped pms.4, 2,
13,524 13524

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families • diagonal rectangulations

• bitstrings by flips (BRGC)

135 2 5 413 2-clumped pms. • generic rectangulations4, 2,
13,524 13524

Pattern-avoiding permutations
Tame patterns Combinatorial objects

f

123

123

1,23 1 23

124 3, 1 243

Catalan families • binary trees by rotations
• triangulations by flips
• Dyck paths by hill flips

Bell families • set partitions by
element exchanges

Baxter families • diagonal rectangulations

• bitstrings by flips (BRGC)

→ see the Combinatorial Object Server: www.combos.org/jump

135 2 5 413 2-clumped pms. • generic rectangulations4, 2,
13,524 13524

Grid classes
• monotone grid class Gridn(M) [Huczynska, Vatter 06]

• geometric grid class Geon(M) [Albert et al. 13]

Grid classes

Theorem: If M = , then both Gridn(M) and Geon(M)
are zigzag languages.

-1 +1

• monotone grid class Gridn(M) [Huczynska, Vatter 06]

• geometric grid class Geon(M) [Albert et al. 13]

Binary trees

T

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i) 6

95

7

8

102

4

3

1

T

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices
6

95

7

8

102

4

3

1

T

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices
6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices
6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices

f(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices

f(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices

f(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

• Sn(231) is a zigzag language, so Algorithm J applies

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices

f(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

Theorem: Under f−1, minimal jumps of Algorithm J translate to
tree rotations, i.e., we obtain a rotation Gray code for binary trees
(↪→ HP on associahedron).

• Sn(231) is a zigzag language, so Algorithm J applies

= [Lucas, Roelants van Baronaigien, Ruskey 93]

Binary trees
• Label vertices with 1, . . . , n according to search tree property:

for any vertex i, we have L(i) < i < R(i)

• Tn := binary (search) trees with n vertices

f(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1
Theorem [Folklore]: There is a bijection f
between Tn and Sn(231).

T

f(T) := (r(T), L(T), R(T))
‘preorder traversal’

Theorem: Under f−1, minimal jumps of Algorithm J translate to
tree rotations, i.e., we obtain a rotation Gray code for binary trees
(↪→ HP on associahedron).

• Sn(231) is a zigzag language, so Algorithm J applies

= [Lucas, Roelants van Baronaigien, Ruskey 93]

i

ij

j

T

Patterns in binary trees
pattern tree host tree

P

T

Patterns in binary trees
pattern tree host tree

P

T contains P

T

Patterns in binary trees
pattern tree host tree

P

T contains P

T ′

T ′ avoids P

T

Patterns in binary trees
pattern tree host tree

P

T contains P

T ′

T ′ avoids P

contiguous
[Rowland 10]

T

Patterns in binary trees
pattern tree host tree

P T

T contains P

non-contiguous
[Dairyko, Tyner, Pudwell, Wynn 12]

P

T contains P

T ′

T ′ avoids P

contiguous
[Rowland 10]

T

Patterns in binary trees
pattern tree host tree

P T

T contains P

T ′

T ′ avoids P

non-contiguous
[Dairyko, Tyner, Pudwell, Wynn 12]

P

T contains P

T ′

T ′ avoids P

contiguous
[Rowland 10]

Mixed tree patterns

P T

T contains P

mixed (new)

Mixed tree patterns

P T

T contains P

T ′

mixed (new)

T ′ avoids P

Mixed tree patterns

P T

T contains P

T ′

mixed (new)

T ′ avoids P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern τ(P) = (f(P), C) such that f : Tn(P) →
Sn(231, τ(P)) is a bijection.

Mixed tree patterns

P T

T contains P

T ′

mixed (new)

T ′ avoids P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern τ(P) = (f(P), C) such that f : Tn(P) →
Sn(231, τ(P)) is a bijection.

• generalizes result of [Pudwell, Scholten, Schrock, Serrato 14]

Mixed tree patterns

P T

T contains P

T ′

mixed (new)

T ′ avoids P

Theorem: For every (mixed) tree pattern, there is a permutation
mesh pattern τ(P) = (f(P), C) such that f : Tn(P) →
Sn(231, τ(P)) is a bijection.

• generalizes result of [Pudwell, Scholten, Schrock, Serrato 14]

• classified all tree patterns on≤ 5 vertices; interesting bijections
to pattern-avoiding lattice paths and set partitions

Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous

Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If P1, . . . , Pk are tame patterns, then
f(Tn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of rotations.

Tame patterns
• A pattern P is tame, if the largest node is

neither root nor leaf, and the right branch from
the root is non-contiguous

Theorem: If P1, . . . , Pk are tame patterns, then
f(Tn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of rotations.

→ see www.combos.org/btree

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

• ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

• ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

= =

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

• ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

= =

• Rn := set of all rectangulations with n rectangles

Generic rectangulations
• Generic rectangulation: subdivision of a square into n

rectangles s.t. no four rectangles meet

• ‘combinatorial’ equivalence: only incidences between rectan-
gles matter

= =

• Rn := set of all rectangulations with n rectangles

R3 =

Generic rectangulations
Theorem [Reading 12]: There is a bijection f between Rn and
Sn(35124, 35142, 24513, 42513) (2-clumped permutations).

Generic rectangulations
Theorem [Reading 12]: There is a bijection f between Rn and
Sn(35124, 35142, 24513, 42513) (2-clumped permutations).

is a zigzag language, so Algorithm J applies

Generic rectangulations
Theorem [Reading 12]: There is a bijection f between Rn and
Sn(35124, 35142, 24513, 42513) (2-clumped permutations).

Theorem: Under f−1, minimal jumps of Algorithm J translate to
rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (↪→ HC on quotientope).

is a zigzag language, so Algorithm J applies

Generic rectangulations
Theorem [Reading 12]: There is a bijection f between Rn and
Sn(35124, 35142, 24513, 42513) (2-clumped permutations).

Theorem: Under f−1, minimal jumps of Algorithm J translate to
rectangle flips, i.e., we obtain a flip Gray code for generic rectan-
gulations (↪→ HC on quotientope).

simple flip

T -flip

wall slide

rectangle flips

is a zigzag language, so Algorithm J applies

Flip Gray code
n = 3

n = 4

Patterns in rectangulations
• Segment: maximal sequence of inner edges

Patterns in rectangulations

• Pattern: connected configuration of segments

P =

• Segment: maximal sequence of inner edges

Patterns in rectangulations

• Pattern: connected configuration of segments

can be seen as a rectangulation itself

P =

• Segment: maximal sequence of inner edges

Patterns in rectangulations

• Pattern: connected configuration of segments

can be seen as a rectangulation itself

P =

contains P

• Segment: maximal sequence of inner edges

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Tame patterns
• A pattern P is tame, if the bottom right corner rectangle does

not stretch across the whole bottom or right side

Theorem: If P1, . . . , Pk are tame patterns, then
f(Rn(P1, . . . , Pk)) is a zigzag language. Under f−1,
minimal jumps of Algorithm J translate to sequences of
rectangle flips.

Examples

Rn(),
diagonal rectangulations

Examples

Rn(),
diagonal rectangulations
↪→ HC on quotientope

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

↪→ HC on quotientope

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

↪→ HC on quotientope

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

Rn() Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

Cn

↪→ HC on quotientope

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

Rn() Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

Cn

↪→ HC on quotientope

↪→ HP on associahedron

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

Rn()

Rn(),

Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

stacked rectangulations

Cn

2n

↪→ HC on quotientope

↪→ HP on associahedron

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

Rn()

Rn(),

Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

stacked rectangulations

Cn

2n

↪→ HC on quotientope

↪→ HP on associahedron

↪→ HC on hypercube

Examples

Rn(),
diagonal rectangulations

area-universal rectangulations
[Eppstein, Mumford, Speckmann, Verbeek 2012]

Rn(), , ,

Rn(), guillotine rectangulations

Rn()

Rn(),

Catalan staircases
[Downing, Einstein, Hartung, Williams 2023]

stacked rectangulations

Cn

2n

↪→ HC on quotientope

↪→ HP on associahedron

↪→ HC on hypercube

→ see www.combos.org/rect

Open questions

• Generating functions for mixed tree patterns?

Open questions

• Generating functions for mixed tree patterns?

• Third notion of edge type in tree patterns

Open questions

• Generating functions for mixed tree patterns?

• Third notion of edge type in tree patterns

Open questions

• Does every rectangulation pattern correspond to a mesh
permutation pattern? → [Asinowski, Cardinal, Felsner, Fusy PP23]

• Generating functions for mixed tree patterns?

• Third notion of edge type in tree patterns

Open questions

• Does every rectangulation pattern correspond to a mesh
permutation pattern? → [Asinowski, Cardinal, Felsner, Fusy PP23]

• Applications of the generation framework to other (pattern-
avoiding) combinatorial objects

• Generating functions for mixed tree patterns?

• Third notion of edge type in tree patterns

Thank you!

