
Monadic second-order logic of permutations

Michal Opler
Joint work with V́ıt Jeĺınek

Czech Technical University in Prague
Charles University

PP 2023
July 7, 2023

First-order logic

First-order (FO) formulas are formed from equality x = y and two special
relation symbols x <1 y , x <2 y using logical connectives (∧,∨,¬,
→,↔) and quantifiers (∃x ,∀x)

FO sentence is a first-order logic formula with all variables quantified.

Example
The existence of a classical pattern 132 is expressed by the FO sentence

∃ x , y , z (x <1 y) ∧ (y <1 z) ∧ (x <2 z) ∧ (z <2 y).

We say that a permutation π models an FO sentence φ if π satisfies φ.
We denote this by π |= φ.

First-order logic

First-order (FO) formulas are formed from equality x = y and two special
relation symbols x <1 y , x <2 y using logical connectives (∧,∨,¬,
→,↔) and quantifiers (∃x ,∀x)

FO sentence is a first-order logic formula with all variables quantified.

Example
The existence of a classical pattern 132 is expressed by the FO sentence

∃ x , y , z (x <1 y) ∧ (y <1 z) ∧ (x <2 z) ∧ (z <2 y).

We say that a permutation π models an FO sentence φ if π satisfies φ.
We denote this by π |= φ.

First-order logic

First-order (FO) formulas are formed from equality x = y and two special
relation symbols x <1 y , x <2 y using logical connectives (∧,∨,¬,
→,↔) and quantifiers (∃x ,∀x)

FO sentence is a first-order logic formula with all variables quantified.

Example
The existence of a classical pattern 132 is expressed by the FO sentence

∃ x , y , z (x <1 y) ∧ (y <1 z) ∧ (x <2 z) ∧ (z <2 y).

We say that a permutation π models an FO sentence φ if π satisfies φ.
We denote this by π |= φ.

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)
Each of the following properties of a permutation σ can be defined using
an FO sentence:

▶ σ contains a fixed classical pattern π,

▶ σ contains a fixed mesh/barred/partially-ordered pattern,

▶ σ belongs to the class Grid(M) for a fixed gridding matrix M,

▶ σ is ⊕-decomposable (and symmetrically for ⊖-decomposability),

▶ σ has exactly k inversions,

▶ σ is simple,

▶ σ is West-k-stack-sortable for a fixed k ,
...

Proposition (Albert, Bouvel, Féray 2020)
The property of having a fixed point is not expressible by an FO sentence.

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)
Each of the following properties of a permutation σ can be defined using
an FO sentence:

▶ σ contains a fixed classical pattern π,

▶ σ contains a fixed mesh/barred/partially-ordered pattern,

▶ σ belongs to the class Grid(M) for a fixed gridding matrix M,

▶ σ is ⊕-decomposable (and symmetrically for ⊖-decomposability),

▶ σ has exactly k inversions,

▶ σ is simple,

▶ σ is West-k-stack-sortable for a fixed k ,
...

Proposition (Albert, Bouvel, Féray 2020)
The property of having a fixed point is not expressible by an FO sentence.

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by
introducing set variables (X), quantification over them (∃X ,∀X) and set
membership predicates (x ∈ X).

Example

partition(X ,Y) = ∀x [(x ∈ X ∨ x ∈ Y) ∧ ¬(x ∈ X ∧ x ∈ Y)] ,

increasing(X) = ∀x , y [(x ∈ X ∧ y ∈ X) → (x <1 y ↔ x <2 y)] ,

decreasing(X) = ∀x , y [(x ∈ X ∧ y ∈ X) → (x <1 y ↔ y <2 x)] .

Using these predicates, we can describe the skew-merged permutations

∃X∃Y (partition(X ,Y) ∧ increasing(X) ∧ decreasing(Y)) .

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by
introducing set variables (X), quantification over them (∃X ,∀X) and set
membership predicates (x ∈ X).

Example

partition(X ,Y) = ∀x [(x ∈ X ∨ x ∈ Y) ∧ ¬(x ∈ X ∧ x ∈ Y)] ,

increasing(X) = ∀x , y [(x ∈ X ∧ y ∈ X) → (x <1 y ↔ x <2 y)] ,

decreasing(X) = ∀x , y [(x ∈ X ∧ y ∈ X) → (x <1 y ↔ y <2 x)] .

Using these predicates, we can describe the skew-merged permutations

∃X∃Y (partition(X ,Y) ∧ increasing(X) ∧ decreasing(Y)) .

Merges

Permutation π is a merge of permutations σ and τ if the elements of π
can be colored red and blue, so that the red elements form a copy of σ
and the blue ones of τ .

For two permutation classes C and D, let C ⊙ D be the class of
permutations obtained by merging a σ ∈ C with a τ ∈ D.

Expressive power of MSO logic

Proposition
For arbitrary MSO sentences φ1, . . . , φk , we can construct an MSO
sentence ρ such that π |= ρ if and only if π can be obtained as a merge
of permutations π1, . . . , πk such that πi |= φi for every i ∈ [k].

Proof.

ρ = ∃X1∃X2 · · · ∃Xk

(
partition(X1, . . . ,Xk) ∧

k∧
i=1

φi (Xi)

)
.

Are there (natural) classes definable in MSO but not in FO?

Expressive power of MSO logic

Proposition
For arbitrary MSO sentences φ1, . . . , φk , we can construct an MSO
sentence ρ such that π |= ρ if and only if π can be obtained as a merge
of permutations π1, . . . , πk such that πi |= φi for every i ∈ [k].

Proof.

ρ = ∃X1∃X2 · · · ∃Xk

(
partition(X1, . . . ,Xk) ∧

k∧
i=1

φi (Xi)

)
.

Are there (natural) classes definable in MSO but not in FO?

Proving inexpressibility in FO

Theorem
Let α be a simple permutation of size at least 4. There is no FO
sentence φ such that σ |= φ iff σ ∈ Av(α)⊙ Av(α).

Proof outline
▶ Assume such a sentence φ exists and let k be its quantifier depth –

the maximum number of nested quantifiers in φ.

▶ Find two permutations σ and τ such that
▶ σ ∈ Av(α)⊙ Av(α) and τ /∈ Av(α)⊙ Av(α), and
▶ σ and τ satisfy the same FO sentences of quantifier depth at most k

and thus, σ |= φ if and only if τ |= φ.

Proving inexpressibility in FO

Theorem
Let α be a simple permutation of size at least 4. There is no FO
sentence φ such that σ |= φ iff σ ∈ Av(α)⊙ Av(α).

Proof outline
▶ Assume such a sentence φ exists and let k be its quantifier depth –

the maximum number of nested quantifiers in φ.

▶ Find two permutations σ and τ such that
▶ σ ∈ Av(α)⊙ Av(α) and τ /∈ Av(α)⊙ Av(α), and
▶ σ and τ satisfy the same FO sentences of quantifier depth at most k

and thus, σ |= φ if and only if τ |= φ.

Ehrenfeucht–Fräıssé games

▶ Two players: Spoiler and Duplicator.

▶ Gameboard: a pair of permutations σ and τ .

▶ In the i-th turn:
▶ Spoiler chooses element si in σ or ti in τ ,
▶ Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is

▶ Duplicator if (s1, . . . , sk) and (t1, . . . , tk) are isomorphic,

▶ Spoiler otherwise.

Theorem (Ehrenfeucht, Fräıssé)
Two permutations σ and τ satisfy the same FO sentences of quantifier
depth at most k if and only if Duplicator has a winning strategy in the
EF-game with k rounds on σ and τ .

Ehrenfeucht–Fräıssé games

▶ Two players: Spoiler and Duplicator.

▶ Gameboard: a pair of permutations σ and τ .

▶ In the i-th turn:
▶ Spoiler chooses element si in σ or ti in τ ,
▶ Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is

▶ Duplicator if (s1, . . . , sk) and (t1, . . . , tk) are isomorphic,

▶ Spoiler otherwise.

Theorem (Ehrenfeucht, Fräıssé)
Two permutations σ and τ satisfy the same FO sentences of quantifier
depth at most k if and only if Duplicator has a winning strategy in the
EF-game with k rounds on σ and τ .

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s1

t1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s2

s1

t1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

t2

s2

s1

t1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s3 t2

s2

s1

t1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

t1s1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

t1s1

t2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s2

t1s1

t2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

s2

t1

s3

s1

t2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

t3

s2

t1

s3

s1

t2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

t3

s2

t1

s3

s1

t2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition
Duplicator wins the EF-game with k rounds on permutations 12 · · · ℓ and
12 · · ·m for every ℓ,m ≥ 2k − 1.

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

Construction of the gameboard

Let α = 3142.

Right arrow α▷ Left arrow α◁ Top arrow α△ Down arrow α▽

B1 B2

B6B5

B4 B3

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

Construction of πℓ.

B1

◁

B2

B6B5

B4 B3

◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

Construction of πℓ.

B1

◁

◁
◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

Construction of πℓ.

B1

◁

◁
◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

Construction of πℓ.

B1

◁

◁
◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is even.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is even.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is even.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is even.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is odd.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is odd.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is odd.

B1

◁

◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

◁
◁

◁

B4ℓ−1B4ℓ

B4ℓ+1 B4ℓ+2

. . .

◁
◁

◁

Coloring πℓ when ℓ is odd.

Claim
The permutation πℓ belongs to Av(α)⊙ Av(α) if and only if ℓ is odd.

Claim
For every n,m ≥ 2k+1 − 2, Duplicator wins the EF-game with k rounds
on πn and πm and thus, πn and πm satisfy the same set of FO sentences
of quantifier depth at most k.

Recap of the proof

▶ Assume there is an FO sentence φ defining Av(α)⊙ Av(α) and let k
be its quantifier depth.

▶ Pick n,m ≥ 2k+1 − 2 such that n is odd and m is even.

▶ We have that πn belongs to Av(α)⊙ Av(α) while πm does not, but
also πn |= φ iff πm |= φ.

Claim
The permutation πℓ belongs to Av(α)⊙ Av(α) if and only if ℓ is odd.

Claim
For every n,m ≥ 2k+1 − 2, Duplicator wins the EF-game with k rounds
on πn and πm and thus, πn and πm satisfy the same set of FO sentences
of quantifier depth at most k .

Recap of the proof

▶ Assume there is an FO sentence φ defining Av(α)⊙ Av(α) and let k
be its quantifier depth.

▶ Pick n,m ≥ 2k+1 − 2 such that n is odd and m is even.

▶ We have that πn belongs to Av(α)⊙ Av(α) while πm does not, but
also πn |= φ iff πm |= φ.

Claim
The permutation πℓ belongs to Av(α)⊙ Av(α) if and only if ℓ is odd.

Claim
For every n,m ≥ 2k+1 − 2, Duplicator wins the EF-game with k rounds
on πn and πm and thus, πn and πm satisfy the same set of FO sentences
of quantifier depth at most k .

Recap of the proof

▶ Assume there is an FO sentence φ defining Av(α)⊙ Av(α) and let k
be its quantifier depth.

▶ Pick n,m ≥ 2k+1 − 2 such that n is odd and m is even.

▶ We have that πn belongs to Av(α)⊙ Av(α) while πm does not, but
also πn |= φ iff πm |= φ.

Expressive power of MSO logic

▶ We can express any merge of several classes that are themselves
MSO-definable.

▶ Any class Av(α)⊙ Av(α) where α is a simple permutation of size at
least 4 cannot be expressed by an FO sentence.

▶ The property of having a fixed point cannot be expressed even in
MSO.

Model checking

Input: A permutation π of size n and an FO (MSO) sentence φ.
Question: Does π |= φ?

First-Order (Monadic Second-Order) Model Checking

Theorem (Bonnet et al. 2021)
There is an algorithm that decides FO Model Checking in time
f (|φ|, tww(π)) · n where f is some computable function f and tww(π) is
the twin-width of π.

Corollary
Let φ be an FO sentence that defines a proper permutation class C.
Then there is an algorithm that decides in O(n) time whether a
permutation π of size n belongs to C, i.e., if π |= φ.

Model checking

Input: A permutation π of size n and an FO (MSO) sentence φ.
Question: Does π |= φ?

First-Order (Monadic Second-Order) Model Checking

Theorem (Bonnet et al. 2021)
There is an algorithm that decides FO Model Checking in time
f (|φ|, tww(π)) · n where f is some computable function f and tww(π) is
the twin-width of π.

Corollary
Let φ be an FO sentence that defines a proper permutation class C.
Then there is an algorithm that decides in O(n) time whether a
permutation π of size n belongs to C, i.e., if π |= φ.

MSO model checking

An incidence graph Gπ of a permutation π is the graph whose vertices
are the elements of π with πi and πj connected by an edge if |i − j | = 1
or |πi − πj | = 1.

The tree-width of a permutation π is defined as the tree-width of Gπ.

Theorem
There is an algorithm that decides MSO Model Checking in time
f (|φ|, tw(π)) · n where f is some computable function f and tw(π) is the
tree-width of π.

MSO model checking

An incidence graph Gπ of a permutation π is the graph whose vertices
are the elements of π with πi and πj connected by an edge if |i − j | = 1
or |πi − πj | = 1.

The tree-width of a permutation π is defined as the tree-width of Gπ.

Theorem
There is an algorithm that decides MSO Model Checking in time
f (|φ|, tw(π)) · n where f is some computable function f and tw(π) is the
tree-width of π.

A permutation class C has the long path property (LPP) if for every k
the class C contains a monotone grid subclass whose cell graph is a path
of length k.

.
.

Theorem (informally)
Let C be a permutation class with the poly-time computable long path
property. Then MSO model checking inside C is already as hard as MSO
model checking on general undirected graphs.

A permutation class C has the long path property (LPP) if for every k
the class C contains a monotone grid subclass whose cell graph is a path
of length k.

.
.

Theorem (informally)
Let C be a permutation class with the poly-time computable long path
property. Then MSO model checking inside C is already as hard as MSO
model checking on general undirected graphs.

Summary

▶ Merge classes are natural example of MSO-definable classes.

▶ Moreover, many of them are not FO-definable.

▶ Tree-width seems to be the right parameter for MSO model
checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture
A permutation class C has unbounded tree-width if and only if it has the
long path property.

Thank you!

Summary

▶ Merge classes are natural example of MSO-definable classes.

▶ Moreover, many of them are not FO-definable.

▶ Tree-width seems to be the right parameter for MSO model
checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture
A permutation class C has unbounded tree-width if and only if it has the
long path property.

Thank you!

Summary

▶ Merge classes are natural example of MSO-definable classes.

▶ Moreover, many of them are not FO-definable.

▶ Tree-width seems to be the right parameter for MSO model
checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture
A permutation class C has unbounded tree-width if and only if it has the
long path property.

Thank you!

Summary

▶ Merge classes are natural example of MSO-definable classes.

▶ Moreover, many of them are not FO-definable.

▶ Tree-width seems to be the right parameter for MSO model
checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture
A permutation class C has unbounded tree-width if and only if it has the
long path property.

Thank you!

