Monadic second-order logic of permutations

Michal Opler
Joint work with Vít Jelínek
Czech Technical University in Prague
Charles University

PP 2023
July 7, 2023

First-order logic

First-order (FO) formulas are formed from equality $x=y$ and two special relation symbols $x<_{1} y, x<2 y$ using logical connectives (\wedge, \vee, \neg, $\rightarrow, \leftrightarrow)$ and quantifiers ($\exists x, \forall x$)
FO sentence is a first-order logic formula with all variables quantified.

First-order logic

First-order (FO) formulas are formed from equality $x=y$ and two special relation symbols $x<_{1} y, x<2 y$ using logical connectives (\wedge, \vee, \neg, $\rightarrow, \leftrightarrow)$ and quantifiers ($\exists x, \forall x$)

FO sentence is a first-order logic formula with all variables quantified.

Example

The existence of a classical pattern 132 is expressed by the FO sentence

$$
\exists x, y, z\left(x<_{1} y\right) \wedge\left(y<_{1} z\right) \wedge\left(x<_{2} z\right) \wedge\left(z<_{2} y\right)
$$

First-order logic

First-order (FO) formulas are formed from equality $x=y$ and two special relation symbols $x<_{1} y, x<_{2} y$ using logical connectives (\wedge, \vee, \neg, $\rightarrow, \leftrightarrow)$ and quantifiers ($\exists x, \forall x$)

FO sentence is a first-order logic formula with all variables quantified.

Example

The existence of a classical pattern 132 is expressed by the FO sentence

$$
\exists x, y, z\left(x<_{1} y\right) \wedge\left(y<_{1} z\right) \wedge\left(x<_{2} z\right) \wedge\left(z<_{2} y\right)
$$

We say that a permutation π models an FO sentence φ if π satisfies φ. We denote this by $\pi \models \varphi$.

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)

Each of the following properties of a permutation σ can be defined using an FO sentence:

- σ contains a fixed classical pattern π,
- σ contains a fixed mesh/barred/partially-ordered pattern,
- σ belongs to the class $\operatorname{Grid}(\mathcal{M})$ for a fixed gridding matrix \mathcal{M},
- σ is \oplus-decomposable (and symmetrically for \ominus-decomposability),
- σ has exactly k inversions,
- σ is simple,
- σ is West-k-stack-sortable for a fixed k,

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)

Each of the following properties of a permutation σ can be defined using an FO sentence:

- σ contains a fixed classical pattern π,
- σ contains a fixed mesh/barred/partially-ordered pattern,
- σ belongs to the class $\operatorname{Grid}(\mathcal{M})$ for a fixed gridding matrix \mathcal{M},
- σ is \oplus-decomposable (and symmetrically for \ominus-decomposability),
- σ has exactly k inversions,
- σ is simple,
- σ is West- k-stack-sortable for a fixed k,

Proposition (Albert, Bouvel, Féray 2020)
The property of having a fixed point is not expressible by an FO sentence.

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by introducing set variables (X), quantification over them $(\exists X, \forall X)$ and set membership predicates $(x \in X)$.

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by introducing set variables (X), quantification over them $(\exists X, \forall X)$ and set membership predicates $(x \in X)$.

Example

$$
\begin{aligned}
\text { partition }(X, Y) & =\forall x[(x \in X \vee x \in Y) \wedge \neg(x \in X \wedge x \in Y)], \\
\text { increasing }(X) & =\forall x, y\left[(x \in X \wedge y \in X) \rightarrow\left(x<_{1} y \leftrightarrow x<_{2} y\right)\right], \\
\text { decreasing }(X) & =\forall x, y\left[(x \in X \wedge y \in X) \rightarrow\left(x<_{1} y \leftrightarrow y<_{2} x\right)\right] .
\end{aligned}
$$

Using these predicates, we can describe the skew-merged permutations
$\exists X \exists Y(\operatorname{partition}(X, Y) \wedge$ increasing $(X) \wedge$ decreasing $(Y))$.

Merges

Permutation π is a merge of permutations σ and τ if the elements of π can be colored red and blue, so that the red elements form a copy of σ and the blue ones of τ.

For two permutation classes \mathcal{C} and \mathcal{D}, let $\mathcal{C} \odot \mathcal{D}$ be the class of permutations obtained by merging a $\sigma \in \mathcal{C}$ with a $\tau \in \mathcal{D}$.

Expressive power of MSO logic

Proposition

For arbitrary MSO sentences $\varphi_{1}, \ldots, \varphi_{k}$, we can construct an MSO sentence ρ such that $\pi \models \rho$ if and only if π can be obtained as a merge of permutations π_{1}, \ldots, π_{k} such that $\pi_{i} \models \varphi_{i}$ for every $i \in[k]$.

Proof.

$$
\rho=\exists X_{1} \exists X_{2} \cdots \exists X_{k}\left(\operatorname{partition}\left(X_{1}, \ldots, X_{k}\right) \wedge \bigwedge_{i=1}^{k} \varphi_{i}\left(X_{i}\right)\right) .
$$

Expressive power of MSO logic

Proposition

For arbitrary MSO sentences $\varphi_{1}, \ldots, \varphi_{k}$, we can construct an MSO sentence ρ such that $\pi \models \rho$ if and only if π can be obtained as a merge of permutations π_{1}, \ldots, π_{k} such that $\pi_{i} \models \varphi_{i}$ for every $i \in[k]$.

Proof.

$$
\rho=\exists X_{1} \exists X_{2} \cdots \exists X_{k}\left(\operatorname{partition}\left(X_{1}, \ldots, X_{k}\right) \wedge \bigwedge_{i=1}^{k} \varphi_{i}\left(X_{i}\right)\right) .
$$

Are there (natural) classes definable in MSO but not in FO?

Proving inexpressibility in FO

Theorem
Let α be a simple permutation of size at least 4. There is no FO sentence φ such that $\sigma \models \varphi$ iff $\sigma \in \operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$.

Proving inexpressibility in FO

Theorem
Let α be a simple permutation of size at least 4. There is no FO sentence φ such that $\sigma \models \varphi$ iff $\sigma \in \operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$.

Proof outline

- Assume such a sentence φ exists and let k be its quantifier depth the maximum number of nested quantifiers in φ.
- Find two permutations σ and τ such that
- $\sigma \in \operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ and $\tau \notin \operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$, and
- σ and τ satisfy the same FO sentences of quantifier depth at most k and thus, $\sigma \models \varphi$ if and only if $\tau \models \varphi$.

Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Gameboard: a pair of permutations σ and τ.
- In the i-th turn:
- Spoiler chooses element s_{i} in σ or t_{i} in τ,
- Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is

- Duplicator if $\left(s_{1}, \ldots, s_{k}\right)$ and $\left(t_{1}, \ldots, t_{k}\right)$ are isomorphic,
- Spoiler otherwise.

Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Gameboard: a pair of permutations σ and τ.
- In the i-th turn:
- Spoiler chooses element s_{i} in σ or t_{i} in τ,
- Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is

- Duplicator if $\left(s_{1}, \ldots, s_{k}\right)$ and $\left(t_{1}, \ldots, t_{k}\right)$ are isomorphic,
- Spoiler otherwise.

Theorem (Ehrenfeucht, Fraïssé)

Two permutations σ and τ satisfy the same FO sentences of quantifier depth at most k if and only if Duplicator has a winning strategy in the $E F$-game with k rounds on σ and τ.

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

EF-game example

Spoiler and Duplicator play EF game with 3 rounds

Proposition

Duplicator wins the EF-game with k rounds on permutations $12 \cdots \ell$ and $12 \cdots m$ for every $\ell, m \geq 2^{k}-1$.

Construction of the gameboard

Let $\alpha=3142$.

Top arrow α^{Δ}

Down arrow α^{∇}

Construction of the gameboard

Let $\alpha=3142$.

Right arrow $\alpha^{\triangleright} \quad$ Left arrow $\alpha^{\triangleleft} \quad$ Top arrow $\alpha^{\Delta} \quad$ Down arrow α^{∇}

Construction of the gameboard

Let $\alpha=3142$.

Top arrow α^{Δ}
Down arrow α^{∇}

Construction of the gameboard

Let $\alpha=3142$.

Top arrow α^{Δ}
Down arrow α^{∇}

Construction of the gameboard

Let $\alpha=3142$.

Top arrow α^{Δ}
Down arrow α^{∇}

Construction of the gameboard

Let $\alpha=3142$.

Top arrow α^{Δ}
Down arrow α^{∇}

Construction of π_{ℓ}.

Construction of π_{ℓ}.

Construction of π_{ℓ}.

Claim
The permutation π_{ℓ} belongs to $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ if and only if ℓ is odd.

Claim
The permutation π_{ℓ} belongs to $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ if and only if ℓ is odd.

Claim

For every $n, m \geq 2^{k+1}-2$, Duplicator wins the EF-game with k rounds on π_{n} and π_{m} and thus, π_{n} and π_{m} satisfy the same set of FO sentences of quantifier depth at most k.

Claim

The permutation π_{ℓ} belongs to $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ if and only if ℓ is odd.

Claim

For every $n, m \geq 2^{k+1}-2$, Duplicator wins the EF-game with k rounds on π_{n} and π_{m} and thus, π_{n} and π_{m} satisfy the same set of FO sentences of quantifier depth at most k.

Recap of the proof

- Assume there is an FO sentence φ defining $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ and let k be its quantifier depth.
- Pick $n, m \geq 2^{k+1}-2$ such that n is odd and m is even.
- We have that π_{n} belongs to $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ while π_{m} does not, but also $\pi_{n} \models \varphi$ iff $\pi_{m} \models \varphi$.

Expressive power of MSO logic

- We can express any merge of several classes that are themselves MSO-definable.
- Any class $\operatorname{Av}(\alpha) \odot \operatorname{Av}(\alpha)$ where α is a simple permutation of size at least 4 cannot be expressed by an FO sentence.
- The property of having a fixed point cannot be expressed even in MSO.

Model checking

First-Order (Monadic Second-Order) Model Checking Input: A permutation π of size n and an FO (MSO) sentence φ. Question: Does $\pi \models \varphi$?

Model checking

- First-Order (Monadic Second-Order) Model Checking Input: A permutation π of size n and an FO (MSO) sentence φ. Question: Does $\pi \models \varphi$?

Theorem (Bonnet et al. 2021)

There is an algorithm that decides FO Model Checking in time $f(|\varphi|, \operatorname{tww}(\pi)) \cdot n$ where f is some computable function f and $\operatorname{tww}(\pi)$ is the twin-width of π.

Corollary

Let φ be an FO sentence that defines a proper permutation class \mathcal{C}. Then there is an algorithm that decides in $\mathcal{O}(n)$ time whether a permutation π of size n belongs to \mathcal{C}, i.e., if $\pi \models \varphi$.

MSO model checking

An incidence graph G_{π} of a permutation π is the graph whose vertices are the elements of π with π_{i} and π_{j} connected by an edge if $|i-j|=1$ or $\left|\pi_{i}-\pi_{j}\right|=1$.

The tree-width of a permutation π is defined as the tree-width of G_{π}.

MSO model checking

An incidence graph G_{π} of a permutation π is the graph whose vertices are the elements of π with π_{i} and π_{j} connected by an edge if $|i-j|=1$ or $\left|\pi_{i}-\pi_{j}\right|=1$.

The tree-width of a permutation π is defined as the tree-width of G_{π}.

Theorem

There is an algorithm that decides MSO Model Checking in time $f(|\varphi|, \operatorname{tw}(\pi)) \cdot n$ where f is some computable function f and $\operatorname{tw}(\pi)$ is the tree-width of π.

A permutation class \mathcal{C} has the long path property (LPP) if for every k the class \mathcal{C} contains a monotone grid subclass whose cell graph is a path of length k.

A permutation class \mathcal{C} has the long path property (LPP) if for every k the class \mathcal{C} contains a monotone grid subclass whose cell graph is a path of length k.

Theorem (informally)
Let \mathcal{C} be a permutation class with the poly-time computable long path property. Then MSO model checking inside \mathcal{C} is already as hard as MSO model checking on general undirected graphs.

Summary

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Summary

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Summary

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture

A permutation class \mathcal{C} has unbounded tree-width if and only if it has the long path property.

Summary

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question

What other natural classes are definable in MSO but not in FO?

Conjecture

A permutation class \mathcal{C} has unbounded tree-width if and only if it has the long path property.

Thank you!

