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First-order logic

First-order (FO) formulas are formed from equality x = y and two special
relation symbols x <3 y, x <z y using logical connectives (A, V, -,
—, <) and quantifiers (3x, Vx)

FO sentence is a first-order logic formula with all variables quantified.
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First-order (FO) formulas are formed from equality x = y and two special
relation symbols x <3 y, x <z y using logical connectives (A, V, -,
—, <) and quantifiers (3x, Vx)

FO sentence is a first-order logic formula with all variables quantified.

Example
The existence of a classical pattern 132 is expressed by the FO sentence

Ix,y,z(x<1y) AN (y<12z) A (x<22) A (z<a2Y).

We say that a permutation ™ models an FO sentence ¢ if 7 satisfies (.
We denote this by 7 = ¢.



Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)

Each of the following properties of a permutation o can be defined using
an FO sentence:

o contains a fixed classical pattern w,

o contains a fixed mesh/barred/partially-ordered pattern,

o belongs to the class Grid(M) for a fixed gridding matrix M,
o is &-decomposable (and symmetrically for &-decomposability),
o has exactly k inversions,

o

g

is simple,

vVvyVvyvyVvyYyvyy

is West-k-stack-sortable for a fixed k,
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Proposition (Albert, Bouvel, Féray 2020)
The property of having a fixed point is not expressible by an FO sentence.
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Monadic second-order (MSO) formulas extend FO formulas by
introducing set variables (X), quantification over them (3X,VX) and set
membership predicates (x € X).



Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by
introducing set variables (X), quantification over them (3X,VX) and set
membership predicates (x € X).

Example

partition(X,Y)=Vx [(x e XVx € Y)A-(xe X Ax € Y]],
increasing(X) =Vx,y[(x e XAy e X) = (x <1y & x<ay)],
decreasing(X) =Vx,y[(x e XAy € X) = (x <1y > y <2 x)].

Using these predicates, we can describe the skew-merged permutations

AX3Y (partition(X, Y) A increasing(X) A decreasing(Y)).



Merges

Permutation 7 is a merge of permutations o and 7 if the elements of 7
can be colored red and blue, so that the red elements form a copy of o
and the blue ones of 7.

For two permutation classes C and D, let C ® D be the class of
permutations obtained by merging a o € C with a 7 € D.



Expressive power of MSO logic

Proposition

For arbitrary MSO sentences 1, . .., pk, we can construct an MSO
sentence p such that & |= p if and only if = can be obtained as a merge
of permutations Ty, . ..,k such that w; = p; for every i € [K].

Proof.

k
p=3X(3X - IX (partition(Xl,...,Xk) A /\(p,-(X,-)) . O
i=1



Expressive power of MSO logic

Proposition

For arbitrary MSO sentences 1, . .., pk, we can construct an MSO
sentence p such that & |= p if and only if = can be obtained as a merge
of permutations Ty, . ..,k such that w; = p; for every i € [K].

Proof.

k
p=3X(3X - IX (partition(Xl,...,Xk) A /\@;(X;)) . O
i=1

Are there (natural) classes definable in MSO but not in FO?
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Let o be a simple permutation of size at least 4. There is no FO
sentence ¢ such that o |= ¢ iff o € Av(a) ® Av(a).



Proving inexpressibility in FO

Theorem

Let o be a simple permutation of size at least 4. There is no FO
sentence ¢ such that o |= ¢ iff o € Av(a) ® Av(a).

Proof outline

» Assume such a sentence @ exists and let k be its quantifier depth —
the maximum number of nested quantifiers in .
» Find two permutations ¢ and 7 such that
» o€ Av(a) ® Av(a) and T ¢ Av(a) ® Av(a), and
» o and T satisfy the same FO sentences of quantifier depth at most k
and thus, o |= ¢ if and only if 7 = .



Ehrenfeucht—Fraissé games

» Two players: Spoiler and Duplicator.
» Gameboard: a pair of permutations ¢ and 7.
» In the j-th turn:

» Spoiler chooses element s; in o or t; in T,
» Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is
» Duplicator if (s,...,sx) and (t1,..., tx) are isomorphic,

» Spoiler otherwise.
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» Two players: Spoiler and Duplicator.
» Gameboard: a pair of permutations ¢ and 7.
» In the j-th turn:

» Spoiler chooses element s; in o or t; in T,
» Duplicator chooses an element in the other permutation.

The winner of the EF-game with k rounds is
» Duplicator if (s,...,sx) and (t1,..., tx) are isomorphic,

» Spoiler otherwise.

Theorem (Ehrenfeucht, Fraissé)

Two permutations o and T satisfy the same FO sentences of quantifier
depth at most k if and only if Duplicator has a winning strategy in the
EF-game with k rounds on o and .
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EF-game example

Spoiler and Duplicator play EF game with 3 rounds

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Proposition

Duplicator wins the EF-game with k rounds on permutations 12 ---¢ and
12---m for every £,m > 2k — 1.
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Claim
The permutation 7, belongs to Av(a) ® Av(«) if and only if £ is odd.

Claim

For every n, m > 2k*1 — 2, Duplicator wins the EF-game with k rounds
on 7, and 7, and thus, 7, and 7, satisfy the same set of FO sentences
of quantifier depth at most k.

Recap of the proof
» Assume there is an FO sentence ¢ defining Av(a) ® Av(«) and let k
be its quantifier depth.
» Pick n,m > 21 — 2 such that n is odd and m is even.

» We have that 7, belongs to Av(a) ® Av(«) while 7, does not, but
also 7, = ¢ iff T = . O



Expressive power of MSO logic

» We can express any merge of several classes that are themselves
MSO-definable.

> Any class Av(a) ® Av(a) where « is a simple permutation of size at
least 4 cannot be expressed by an FO sentence.

» The property of having a fixed point cannot be expressed even in
MSO.
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FIRST-ORDER (MONADIC SECOND-ORDER) MODEL CHECKING

Input: A permutation 7 of size n and an FO (MSO) sentence ¢.
Question: Does m = ©?

Theorem (Bonnet et al. 2021)

There is an algorithm that decides FO MODEL CHECKING in time

(||, tww(7)) - n where f is some computable function f and tww(r) is
the twin-width of .

Corollary

Let ¢ be an FO sentence that defines a proper permutation class C.
Then there is an algorithm that decides in O(n) time whether a
permutation 7 of size n belongs to C, i.e., if ™ |= .



MSO model checking

An incidence graph G, of a permutation 7 is the graph whose vertices
are the elements of = with 7; and 7; connected by an edge if |i —j| =1
or ‘7‘(’,‘ 77Tj| =1.

The tree-width of a permutation 7 is defined as the tree-width of G;.



MSO model checking

An incidence graph G, of a permutation 7 is the graph whose vertices
are the elements of = with 7; and 7; connected by an edge if |i —j| =1
or ‘7‘(’,‘ 77Tj| =1.

The tree-width of a permutation 7 is defined as the tree-width of G;.

Theorem

There is an algorithm that decides MSO MODEL CHECKING in time
f(J|, tw(m)) - n where f is some computable function f and tw(w) is the
tree-width of 7.



A permutation class C has the long path property (LPP) if for every k
the class C contains a monotone grid subclass whose cell graph is a path
of length k.
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A permutation class C has the long path property (LPP) if for every k
the class C contains a monotone grid subclass whose cell graph is a path
of length k.
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Theorem (informally)

Let C be a permutation class with the poly-time computable long path
property. Then MSO model checking inside C is already as hard as MSO
model checking on general undirected graphs.
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Summary

» Merge classes are natural example of MSO-definable classes.
» Moreover, many of them are not FO-definable.

» Tree-width seems to be the right parameter for MSO model
checking in permutations.

Question
What other natural classes are definable in MSO but not in FO?

Conjecture
A permutation class C has unbounded tree-width if and only if it has the
long path property.

Thank you!



