Monadic second-order logic of permutations

Michal Opler Joint work with Vít Jelínek

Czech Technical University in Prague Charles University

> PP 2023 July 7, 2023

First-order logic

First-order (FO) formulas are formed from equality x = y and two special relation symbols $x <_1 y$, $x <_2 y$ using logical connectives $(\land, \lor, \neg, \rightarrow, \leftrightarrow)$ and quantifiers $(\exists x, \forall x)$

FO sentence is a first-order logic formula with all variables quantified.

First-order logic

First-order (FO) formulas are formed from equality x = y and two special relation symbols $x <_1 y$, $x <_2 y$ using logical connectives $(\land, \lor, \neg, \rightarrow, \leftrightarrow)$ and quantifiers $(\exists x, \forall x)$

FO sentence is a first-order logic formula with all variables quantified.

Example

The existence of a classical pattern 132 is expressed by the FO sentence

$$\exists x, y, z (x <_1 y) \land (y <_1 z) \land (x <_2 z) \land (z <_2 y).$$

First-order logic

First-order (FO) formulas are formed from equality x = y and two special relation symbols $x <_1 y$, $x <_2 y$ using logical connectives $(\land, \lor, \neg, \rightarrow, \leftrightarrow)$ and quantifiers $(\exists x, \forall x)$

FO sentence is a first-order logic formula with all variables quantified.

Example

The existence of a classical pattern 132 is expressed by the FO sentence

$$\exists x, y, z (x <_1 y) \land (y <_1 z) \land (x <_2 z) \land (z <_2 y).$$

We say that a permutation π models an FO sentence φ if π satisfies φ . We denote this by $\pi \models \varphi$.

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)

Each of the following properties of a permutation σ can be defined using an FO sentence:

- σ contains a fixed classical pattern π ,
- σ contains a fixed mesh/barred/partially-ordered pattern,
- σ belongs to the class Grid(\mathcal{M}) for a fixed gridding matrix \mathcal{M} ,
- σ is \oplus -decomposable (and symmetrically for \ominus -decomposability),
- σ has exactly k inversions,
- $\blacktriangleright \sigma$ is simple,
- σ is West-k-stack-sortable for a fixed k,

Expressive power of FO logic

Proposition (Albert, Bouvel, Féray 2020)

Each of the following properties of a permutation σ can be defined using an FO sentence:

- σ contains a fixed classical pattern π ,
- \blacktriangleright σ contains a fixed mesh/barred/partially-ordered pattern,
- σ belongs to the class Grid(\mathcal{M}) for a fixed gridding matrix \mathcal{M} ,
- σ is \oplus -decomposable (and symmetrically for \ominus -decomposability),
- σ has exactly k inversions,
- $\blacktriangleright \sigma$ is simple,
- σ is West-k-stack-sortable for a fixed k,

Proposition (Albert, Bouvel, Féray 2020)

The property of having a fixed point is not expressible by an FO sentence.

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by introducing set variables (X), quantification over them $(\exists X, \forall X)$ and set membership predicates ($x \in X$).

Monadic second-order logic

Monadic second-order (MSO) formulas extend FO formulas by introducing set variables (X), quantification over them $(\exists X, \forall X)$ and set membership predicates ($x \in X$).

Example

$$partition(X, Y) = \forall x \ [(x \in X \lor x \in Y) \land \neg (x \in X \land x \in Y)],$$

increasing(X) = $\forall x, y \ [(x \in X \land y \in X) \rightarrow (x <_1 y \leftrightarrow x <_2 y)],$
decreasing(X) = $\forall x, y \ [(x \in X \land y \in X) \rightarrow (x <_1 y \leftrightarrow y <_2 x)].$

Using these predicates, we can describe the skew-merged permutations

 $\exists X \exists Y (partition(X, Y) \land increasing(X) \land decreasing(Y)).$

Merges

Permutation π is a merge of permutations σ and τ if the elements of π can be colored red and blue, so that the red elements form a copy of σ and the blue ones of τ .

For two permutation classes C and D, let $C \odot D$ be the class of permutations obtained by merging a $\sigma \in C$ with a $\tau \in D$.

Expressive power of MSO logic

Proposition

For arbitrary MSO sentences $\varphi_1, \ldots, \varphi_k$, we can construct an MSO sentence ρ such that $\pi \models \rho$ if and only if π can be obtained as a merge of permutations π_1, \ldots, π_k such that $\pi_i \models \varphi_i$ for every $i \in [k]$.

Proof.

$$\rho = \exists X_1 \exists X_2 \cdots \exists X_k \left(partition(X_1, \ldots, X_k) \land \bigwedge_{i=1}^k \varphi_i(X_i) \right). \qquad \Box$$

Expressive power of MSO logic

Proposition

For arbitrary MSO sentences $\varphi_1, \ldots, \varphi_k$, we can construct an MSO sentence ρ such that $\pi \models \rho$ if and only if π can be obtained as a merge of permutations π_1, \ldots, π_k such that $\pi_i \models \varphi_i$ for every $i \in [k]$.

Proof.

$$\rho = \exists X_1 \exists X_2 \cdots \exists X_k \left(partition(X_1, \ldots, X_k) \land \bigwedge_{i=1}^k \varphi_i(X_i) \right). \qquad \Box$$

Are there (natural) classes definable in MSO but not in FO?

Proving inexpressibility in FO

Theorem

Let α be a simple permutation of size at least 4. There is no FO sentence φ such that $\sigma \models \varphi$ iff $\sigma \in Av(\alpha) \odot Av(\alpha)$.

Proving inexpressibility in FO

Theorem

Let α be a simple permutation of size at least 4. There is no FO sentence φ such that $\sigma \models \varphi$ iff $\sigma \in Av(\alpha) \odot Av(\alpha)$.

Proof outline

- Assume such a sentence φ exists and let k be its quantifier depth the maximum number of nested quantifiers in φ.
- Find two permutations σ and τ such that
 - $\sigma \in Av(\alpha) \odot Av(\alpha)$ and $\tau \notin Av(\alpha) \odot Av(\alpha)$, and
 - σ and τ satisfy the same FO sentences of quantifier depth at most k and thus, σ ⊨ φ if and only if τ ⊨ φ.

Ehrenfeucht-Fraïssé games

- ► Two players: Spoiler and Duplicator.
- Gameboard: a pair of permutations σ and τ .
- In the *i*-th turn:
 - Spoiler chooses element s_i in σ or t_i in τ ,
 - Duplicator chooses an element in the other permutation.
- The winner of the EF-game with k rounds is
 - Duplicator if (s_1, \ldots, s_k) and (t_1, \ldots, t_k) are isomorphic,
 - Spoiler otherwise.

Ehrenfeucht-Fraïssé games

- ► Two players: Spoiler and Duplicator.
- Gameboard: a pair of permutations σ and τ .
- In the *i*-th turn:
 - Spoiler chooses element s_i in σ or t_i in τ ,
 - Duplicator chooses an element in the other permutation.
- The winner of the EF-game with k rounds is
 - Duplicator if (s_1, \ldots, s_k) and (t_1, \ldots, t_k) are isomorphic,
 - Spoiler otherwise.

Theorem (Ehrenfeucht, Fraïssé)

Two permutations σ and τ satisfy the same FO sentences of quantifier depth at most k if and only if Duplicator has a winning strategy in the EF-game with k rounds on σ and τ .

Spoiler and Duplicator play EF game with 3 rounds

Proposition

Duplicator wins the EF-game with k rounds on permutations $12 \cdots \ell$ and $12 \cdots m$ for every $\ell, m \ge 2^k - 1$.

Let $\alpha = 3142$.

Right arrow α^{\triangleright}

Left arrow α^{\triangleleft}

Top arrow $\alpha^{\scriptscriptstyle \Delta}$

Down arrow α^{\triangledown}

 $B_{4\ell+2}$

 $B_{4\ell+2}$

Claim

The permutation π_{ℓ} belongs to $Av(\alpha) \odot Av(\alpha)$ if and only if ℓ is odd.

Claim

The permutation π_{ℓ} belongs to $Av(\alpha) \odot Av(\alpha)$ if and only if ℓ is odd.

Claim

For every $n, m \ge 2^{k+1} - 2$, Duplicator wins the EF-game with k rounds on π_n and π_m and thus, π_n and π_m satisfy the same set of FO sentences of quantifier depth at most k.

Claim

The permutation π_{ℓ} belongs to $Av(\alpha) \odot Av(\alpha)$ if and only if ℓ is odd.

Claim

For every $n, m \ge 2^{k+1} - 2$, Duplicator wins the EF-game with k rounds on π_n and π_m and thus, π_n and π_m satisfy the same set of FO sentences of quantifier depth at most k.

Recap of the proof

- Assume there is an FO sentence φ defining Av(α) ⊙ Av(α) and let k be its quantifier depth.
- ▶ Pick $n, m \ge 2^{k+1} 2$ such that n is odd and m is even.
- We have that π_n belongs to $Av(\alpha) \odot Av(\alpha)$ while π_m does not, but also $\pi_n \models \varphi$ iff $\pi_m \models \varphi$.

Expressive power of MSO logic

- We can express any merge of several classes that are themselves MSO-definable.
- Any class Av(α) ⊙ Av(α) where α is a simple permutation of size at least 4 cannot be expressed by an FO sentence.
- The property of having a fixed point cannot be expressed even in MSO.

Model checking

FIRST-ORDER (MONADIC SECOND-ORDER) MODEL CHECKING Input: A permutation π of size n and an FO (MSO) sentence φ . Question: Does $\pi \models \varphi$?

Model checking

FIRST-ORDER (MONADIC SECOND-ORDER) MODEL CHECKING Input: A permutation π of size n and an FO (MSO) sentence φ . Question: Does $\pi \models \varphi$?

Theorem (Bonnet et al. 2021)

There is an algorithm that decides FO MODEL CHECKING in time $f(|\varphi|, \mathsf{tww}(\pi)) \cdot n$ where f is some computable function f and $\mathsf{tww}(\pi)$ is the twin-width of π .

Corollary

Let φ be an FO sentence that defines a proper permutation class C. Then there is an algorithm that decides in O(n) time whether a permutation π of size n belongs to C, i.e., if $\pi \models \varphi$.

MSO model checking

An incidence graph G_{π} of a permutation π is the graph whose vertices are the elements of π with π_i and π_j connected by an edge if |i - j| = 1 or $|\pi_i - \pi_j| = 1$.

The tree-width of a permutation π is defined as the tree-width of G_{π} .

MSO model checking

An incidence graph G_{π} of a permutation π is the graph whose vertices are the elements of π with π_i and π_j connected by an edge if |i - j| = 1 or $|\pi_i - \pi_j| = 1$.

The tree-width of a permutation π is defined as the tree-width of G_{π} .

Theorem

There is an algorithm that decides MSO MODEL CHECKING in time $f(|\varphi|, tw(\pi)) \cdot n$ where f is some computable function f and $tw(\pi)$ is the tree-width of π .

A permutation class C has the long path property (LPP) if for every k the class C contains a monotone grid subclass whose cell graph is a path of length k.

A permutation class C has the long path property (LPP) if for every k the class C contains a monotone grid subclass whose cell graph is a path of length k.

Theorem (informally)

Let C be a permutation class with the poly-time computable long path property. Then MSO model checking inside C is already as hard as MSO model checking on general undirected graphs.

- Merge classes are natural example of MSO-definable classes.
- ▶ Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question

What other natural classes are definable in MSO but not in FO?

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question

What other natural classes are definable in MSO but not in FO?

Conjecture

A permutation class ${\mathcal C}$ has unbounded tree-width if and only if it has the long path property.

- Merge classes are natural example of MSO-definable classes.
- Moreover, many of them are not FO-definable.
- Tree-width seems to be the right parameter for MSO model checking in permutations.

Question

What other natural classes are definable in MSO but not in FO?

Conjecture

A permutation class ${\mathcal C}$ has unbounded tree-width if and only if it has the long path property.

Thank you!