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What’s the state of computation and experimentation in Permutation Patterns?
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Enumeration Scheme
A polynomial-time algorithm to compute the 
number of permutations of length .n
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Define  .A(n) := Avn(123)

Every non-empty permutation has a minimum entry somewhere.

Obviously  .A(n) =
n

⋃
i=1

A1(n, i)

Define  .A1(n, i) := {π ∈ A(n) : π(i) = 1}
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If  , then the entry  is either to the left or to the right of .n ≥ 2 2 1

Obviously  .A1(n, i) =
i−1

⋃
j=1

A21(n, j, i) ∪
n

⋃
j=i+1

A12(n, i, j)

We could do this forever…
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Claim 1: |A21(n, j, i) | = |A1(n − 1, j) | ✓
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Claim 2:   |A12(n, i, j) | = { 0, j < n
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“The Most Trivial Non-Trivial Example” — Av(123)

A(n) =
n

⋃
i=1

A1(n, i)

A1(n, i) =
i−1

⋃
j=1

A21(n, j, i) ∪
n

⋃
j=i+1

A12(n, i, j)

A21(n, j, i) ≅ A1(n − 1,j)

A12(n, i, j) ≅ { ∅ , j < n
A1(n − 1,i), j = n
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Enumeration Schemes
Big Picture:

‣ The computer splits the whole set  further 
and further based on the pattern formed by the bottom entries.

A(n)

‣ At each step it checks if any of the entries are “reversibly deletable”. If so, 
this branch of the search tree doesn’t need to be split further.

‣ If all branches finish, we get an enumeration scheme, which gives us a 
polynomial-time algorithm to count the number of permutations of length 

, but does not give us the generating function. n



Enumeration Schemes
Zeilberger’s method is:

Experimental:    when you “hit go”, you don’t know whether      
                                            or not it will return an answer

        Rigorous:    if it does give an answer, it’s guaranteed to  
                                           be correct
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Generating Trees
‣ A “generating tree” for a set of permutations is a way of rigorously 

representing its structure. It describes where new maximum entries can be 
inserted into permutations so that they remain in the set.

(Vatter 2007)
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Generating Trees
‣ 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to 

enumerate the Baxter permutations.

‣ 1995/1996: West uses generating trees to enumerate several permutation 
classes.

‣ 2006: Vatter categorizes the permutation classes that have finitely labeled 
generating trees and writes the Maple package FINLABEL to enumerate them 
automatically.
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Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses 
them to do many things: enumeration, generating functions, exhaustively 
generating all objects in a fast way, …

‣ On Thursday: More algorithms for exhaustive generation!













Struct
Most of the methods described so far: 
   “expand a particular structure tree and 
     hope it ends up being finite”

Struct is a software package that takes a permutation class as input and 
searches for a set cover that decomposes it into simpler disjoint parts. 



Struct
𝒢4 = Av(321,1324)



Struct
Method:

‣ Construct a big list of grids that make 
  subsets of the input class.

‣ Set up an integer linear programming problem to pick a subset of grids that 
forms a set cover (each permutation in the class gives one constraint).

‣ Feed it into an ILP solver like Gurobi and wait patiently for a solution.





Combinatorial Exploration
At the end of the Struct paper, the authors discuss some classes that Struct 
can’t do along with a possible future approach.

“proof tree”



Combinatorial Exploration
I started talking with Henning Ulfarsson and Christian Bean at PP 2016.

6 years later…
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Combinatorial Exploration
Key insights:

1. Instead of expanding one particular structure tree and hoping it ends up 
being finite: produce a bunch of independent “rules” that relate a parent 
set to child sets, and hope that some subset of these rules can be 
assembled into a tree

2. We need a much more efficient way to represent sets of permutations.

3. If (1) and (2) are done correctly, then the result can still be fully rigorous.
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Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.
and then to the children they produced

and then to the children they produced
and then to the children they produced

…
‣ Each time you apply a strategy to a set, you make a puzzle piece. Search the 

pile of puzzle pieces for a subset that makes a combinatorial specification. If 
you find one, you win!

polynomial-time counting algorithm, system of equations for the GF, 
  uniform random sampling routine, exhaustive generation (but slow)



Tilings
You have to represent infinite sets of permutations on your finite computer.



Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite 
representation for some sets of permutations.



Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite 
representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a 
representation called a “Tiling”.



Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite 
representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a 
representation called a “Tiling”.

A tiling is a grid of cells that has “obstructions” that tell you patterns that can’t 
appear, and “requirements” that tell you patterns that must appear.
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Tilings
The key innovation is that as you perform strategies on tilings, you can keep 
track of exactly where bad patterns can be formed.

So unlike most other methods, you don’t have to constantly generate 
permutations at every step to recompute this, which makes applying the 
strategies very fast.
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Combinatorial Exploration
Av(1243, 1342, 2143)

The algorithm generates about 
5,400 rules before it finds this 
subset of 10 rules that makes a 
rigorous specification.

55 seconds



Combinatorial Exploration
We can find combinatorial specifications for:

‣ 6 out of 7 of the classes avoiding 1 pattern of length 4
First direct enumerations of  and Av(1342) Av(2413)

‣ All 56 classes avoiding 2 patterns of length 4
3 are conjectured to be non-D-finite 
can derive the algebraic GF for the other 53 

‣ All 317 classes avoiding 3 patterns of length 4

‣ All classes avoiding 4 or more patterns of length 4



Combinatorial Exploration
We can find combinatorial specifications for:

‣ 1324-avoiding domino permutations

‣ Preimage of  under West-stack-sorting 
         

Av(321)
Av(34251, 35241, 45231)

‣ LCI Schubert Varieties 
         Av(52341, 53241, 52431, 35142, 42513, 351624)

‣ “Box classes” like  and Av(1 □ 2 □ 3) Av(1 □ □ 32)

‣ “POP classes”

‣ Permutations corresponding to Schubert varieties with a complete parabolic 
bundle structure 
         Av(3412, 52341, 635241)
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https://permpal.com

https://permpal.com




















Combinatorial Exploration

Av(1234, 1243) Av(1234, 1324) Av(1234, 1342) Av(1234, 1432) Av(1234, 2143) Av(1234, 2341) Av(1234, 2413) Av(1234, 2431) Av(1234, 3412)

Av(1234, 3421) Av(1234, 4231) Av(1243, 1324) Av(1243, 1342) Av(1243, 1432) Av(1243, 2134) Av(1243, 2143) Av(1243, 2314) Av(1243, 2341)

Av(1243, 2413) Av(1243, 2431) Av(1243, 3214) Av(1243, 3241) Av(1243, 3412) Av(1243, 3421) Av(1243, 4231) Av(1324, 1342) Av(1324, 1432)

Av(1324, 2143) Av(1324, 2341) Av(1324, 2413) Av(1324, 2431) Av(1324, 3412) Av(1324, 4231) Av(1342, 1423) Av(1342, 1432) Av(1342, 2143)

Av(1342, 2314) Av(1342, 2341) Av(1342, 2413) Av(1342, 2431) Av(1342, 3124) Av(1342, 3142) Av(1342, 3214) Av(1342, 3241) Av(1342, 3412)

Av(1342, 4123) Av(1342, 4213) Av(1432, 2143) Av(1432, 2341) Av(1432, 2413) Av(1432, 3214) Av(1432, 3412) Av(2143, 2413) Av(2143, 3412)

Av(2413, 3142) Av(1234) Av(1243) Av(1432)

1
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Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

‣ rigorous definition of “combinatorial strategy” as a component of 
combinatorial specifications 

‣ algorithm to search giant set of rules for a subset that is a combinatorial 
specification 

‣working with gridded versions of objects internally, represented by 
obstructions and requirements 

Combinatorial Exploration is domain-agnostic and can be used in other fields
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 T1(x) = 1 + (x + x2)T1(x) + x3 d
dx

T1(x)

Set Partitions
Polyominoes

T1(x) =
∞

∏
i=1

1
1 − xi
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Permutation Patterns: Easy or Hard?
Garrabrant and Pak proved that there are classes with a finite basis for which 
there exists no polynomial-time counting algorithm! 

Does a polynomial-time algorithm exist for ?Av(1324)

What about the classes that avoid a single pattern of length 5, like ?Av(24135)

25 years from now, how will the role of computers in our research be different?



1



10 years and 2 days ago…


