Computational and Experimental Methods in Permutation Patterns

Jay Pantone
Marquette University

Permutation Patterns 2023
Dijon, France

25 years ago...

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/"zeilberg

Received May 27, 1998

25 years ago...

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/"zeilberg

It is way too soon to teach our computers how to become full-fledged humans. It is even premature to teach them how to become mathematicians; it is even unwise, at present, to teach them how to become combinatorialists. But the time is ripe to teach them how to become experts in a suitably defined and narrowly focused subarea of combinatorics. In this article, the author will describe his efforts in teaching his beloved computer, Shalosh B. Ekhad, how to be an enumerator of Wilf classes.

25 years ago...

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/"zeilberg

With all due respect to Wilf classes and enumeration, and even to combinatorics, the main point of this article is not to enhance our understanding of Wilf classes, but to illustrate how much (if not all) of mathematical research will be conducted in a few years. It goes as follows. Suppose a (as of now, human) mathematician has a brilliant idea. Teach that idea to a computer and let the computer 'do research' using that idea.

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@ math.temple.edu, http://www.math.temple.edu//zeilberg

With all due respect to Wilf classes and enumeration, and even to combinatorics, the main point of this article is not to enhance our understanding of Wilf classes, but to illustrate how much (if not all) of mathematical research will be conducted in a few years. It goes as follows. Suppose a (as of now, human) mathematician has a brilliant idea. Teach that idea to a computer and let the computer 'do research' using that idea.

What's the state of computation and experimentation in Permutation Patterns?

Enumeration Schemes

Goal: Teach the computer how to search for structure in a permutation class.

Enumeration Schemes and, More Importantly, Their Automatic Generation

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/"zeilberg

Enumeration Schemes

Goal: Teach the computer how to search for structure in a permutation class.

Input: A basis for a permutation class.

Enumeration Schemes

Goal: Teach the computer how to search for structure in a permutation class.

Input: A basis for a permutation class.

Output: An "enumeration scheme" that describes how larger permutations in the class can be recursively described in terms of smaller permutations in the class.

Enumeration Schemes

Goal: Teach the computer how to search for structure in a permutation class.

Input: A basis for a permutation class.

Output: An "enumeration scheme" that describes how larger permutations in the class can be recursively described in terms of smaller permutations in the class.

Enumeration Scheme

A polynomial-time algorithm to compute the number of permutations of length n.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Define $A(n):=\operatorname{Av}_{n}(123)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)
Their Automatic Generation

Define $A(n):=\operatorname{Av}_{n}(123)$.

Every non-empty permutation has a minimum entry somewhere.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Their Automatic Generation
Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

Define $A(n):=\operatorname{Av}_{n}(123)$.

Every non-empty permutation has a minimum entry somewhere.

Define $A_{1}(n, i):=\{\pi \in A(n): \pi(i)=1\}$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Define $A(n):=\operatorname{Av}_{n}(123)$.

Every non-empty permutation has a minimum entry somewhere.

Define $A_{1}(n, i):=\{\pi \in A(n): \pi(i)=1\}$.
Obviously $A(n)=\bigcup_{i=1}^{n} A_{1}(n, i)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

If $n \geq 2$, then the entry 2 is either to the left or to the right of 1 .

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation
Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

If $n \geq 2$, then the entry 2 is either to the left or to the right of 1 .

Define $A_{12}(n, i, j):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i<j\}$ and $A_{21}(n, j, i):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i>j\}$

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)
Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg

Received May 27, 1998

If $n \geq 2$, then the entry 2 is either to the left or to the right of 1 .
Define $A_{12}(n, i, j):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i<j\}$ and $A_{21}(n, j, i):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i>j\}$

Obviously $A_{1}(n, i)=\left(\bigcup_{j=1}^{i-1} A_{21}(n, j, i)\right) \cup\left(\bigcup_{j=i+1}^{n} A_{12}(n, i, j)\right)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27,1998

If $n \geq 2$, then the entry 2 is either to the left or to the right of 1 .
Define $A_{12}(n, i, j):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i<j\}$ and $A_{21}(n, j, i):=\{\pi \in A(n): \pi(i)=1, \pi(j)=2, i>j\}$

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av (123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$

Let π be any permutation with $\pi(j)=2, \pi(i)=1$, $j<i$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av (123)

Boron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg

Received May 27, 1998

Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$
Let π be any permutation with $\pi(j)=2, \pi(i)=1$,
$j<i$.
π contains 123 of
$\pi-\pi(i)$ contains 123

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av (123)

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27,1998
Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$
π contains 123
of
$\pi-\pi(i)$ contains 123

Any 123 that doesn't involve $\pi(i)$ is obviously still in $\pi-\pi(i)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg

Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$

$$
\begin{aligned}
& \pi \text { contains } 123 \\
& \text { of } \\
& \pi-\pi(i) \text { contains } 123
\end{aligned}
$$

If an occurrence of 123 involves $\pi(i)$, it must be the 1.
$\pi-\pi(i)$ has a 123 with $\pi(i)$ substituting for $\pi(i)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Boron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg

Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$

$$
\begin{aligned}
& \pi \text { contains } 123 \\
& \text { of } \\
& \pi-\pi(i) \text { contains } 123
\end{aligned}
$$

If an occurrence of 123 involves $\pi(i)$, it must be the 1.
$\pi-\pi(i)$ has a 123 with $\pi(i)$ substituting for $\pi(i)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av (123)

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998
Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$
π contains 123
of
$\pi-\pi(i)$ contains 123

So there is a bijection between $A_{21}(n, j, i)$ and $A_{1}(n-1, j)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av (123)

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27,1998 Claim 1: $\left|A_{21}(n, j, i)\right|=\left|A_{1}(n-1, j)\right|$

$$
\begin{aligned}
& \pi \text { contains } 123 \\
& \text { of } \\
& \pi-\pi(i) \text { contains } 123
\end{aligned}
$$

So there is a bijection between $A_{21}(n, j, i)$ and $A_{1}(n-1, j)$.

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

Claim 2: $\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cc}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array}\right.$

Enumeration Schemes

"The Most Trivial Non-Trivial Example" - Av(123)

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

Claim 2: $\quad\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cc}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array}\right.$

Enumeration Schemes
"The Most Trivial Non-Trivial Example" - Av (123)
Claim 2: $\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cl}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array}\right.$

$$
\Rightarrow A_{12}(n, i, j)=\varnothing
$$

when $j<n$.

Enumeration Schemes
Enumeration Schemes and, More Importantly, Their Automatic Generation Boron Zeilberger*
"The Most Trivial Non-Trivial Example" - Av (123) Department of Mathematics, Temple University, Philadelphia, PA 19122, USA Received May 27, 1998

Claim 2: $\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cc}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array}\right.$

$$
\Rightarrow A_{12}(n, i, j)=\varnothing
$$

when $j<n$.
When $j=n, \pi(j)$ can be deleted without destroying any 123 patterns.

Enumeration Schemes
Enumeration Schemes and, More Importantly, Their Automatic Generation Boron Zeilberger*
"The Most Trivial Non-Trivial Example" - Av (123) Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple Received May 27, 1998

Claim 2: $\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cc}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array}\right.$

$$
\Rightarrow A_{12}(n, i, j)=\varnothing
$$

when $j<n$.
When $j=n, \pi(j)$ can be deleted without destroying any 123 patterns.

$$
\Rightarrow A_{12}(n, i, n) \cong A_{1}(n-1, i)
$$

Enumeration Schemes
"The Most Trivial Non-Trivial Example" - Av (123)
Claim 2: $\left|A_{12}(n, i, j)\right|=\left\{\begin{array}{cc}0, & j<n \\ \left|A_{1}(n-1, i)\right|, & j=n\end{array} \quad\right.$

$$
\Rightarrow A_{12}(n, i, j)=\varnothing
$$

when $j<n$.
When $j=n, \pi(j)$ can be deleted without destroying any 123 patterns.

$$
\Rightarrow A_{12}(n, i, n) \cong A_{1}(n-1, i)
$$

Enumeration Schemes

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

$$
\begin{aligned}
A(n) & =\bigcup_{i=1}^{n} A_{1}(n, i) \\
A_{1}(n, i) & =\left(\bigcup_{j=1}^{i-1} A_{21}(n, j, i)\right) \cup\left(\bigcup_{j=i+1}^{n} A_{12}(n, i, j)\right) \\
A_{21}(n, j, i) & \cong A_{1}(n-1, j)
\end{aligned}
$$

$$
A_{12}(n, i, j) \cong\left\{\begin{array}{cr}
\varnothing & , j<n \\
A_{1}(n-1, i), j=n
\end{array}\right.
$$

Enumeration Schemes

Big Picture:

Enumeration Schemes and, More Importantly,
Their Automatic Generation
Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

- The computer splits the whole set $A(n)$ further and further based on the pattern formed by the bottom entries.

Enumeration Schemes

Big Picture:

- The computer splits the whole set $A(n)$ further and further based on the pattern formed by the bottom entries.
- At each step it checks if any of the entries are "reversibly deletable". If so, this branch of the search tree doesn't need to be split further.

Enumeration Schemes

Big Picture:

- The computer splits the whole set $A(n)$ further and further based on the pattern formed by the bottom entries.
- At each step it checks if any of the entries are "reversibly deletable". If so, this branch of the search tree doesn't need to be split further.
- If all branches finish, we get an enumeration scheme, which gives us a polynomial-time algorithm to count the number of permutations of length n, but does not give us the generating function.

Enumeration Schemes

Zeilberger's method is:

Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998

Experimental: when you "hit go", you don't know whether or not it will return an answer

Rigorous: if it does give an answer, it's guaranteed to be correct
rigorous non-rigorous

rigorous non-rigorous	-enumeration schemes	
WILF		

rigorous non-rigorous	- enumeration schemes	
WILF		

Enumeration Schemes - WILFPLUS

In 2007, Vince Vatter made the method more powerful by increasing the number of situations in which a point can be declared reversibly deletable.

Enumeration Schemes for Restricted Permutations
VINCENT VATTER ${ }^{1 \dagger}$

$\operatorname{Av}(1342,1432)$

Enumeration Schemes - WILFPLUS

In 2007, Vince Vatter made the method more powerful by increasing the number of situations in which a point can be declared reversibly deletable.

Enumeration Schemes - WILFPLUS

In 2007, Vince Vatter made the method more powerful by increasing the number of situations in which a point can be declared reversibly deletable.

Enumeration Schemes - WILFPLUS

In 2007, Vince Vatter made the method more powerful by increasing the number of situations in which a point can be declared reversibly deletable.

Enumeration Schemes for Restricted Permutations

VINCENT WATER ${ }^{1 \dagger}$
${ }^{1}$ School of Mathematics and Statistics, University of St Andrews
St Andrews, Fife KY19 9SS, UK
(e-mail: vince@mcs.st-and.ac.uk
http://turnbull.mcs.st-and.ac.uk/~vince)

Knowing this: the entry $\pi(j)$ can be deleted.
Zeilberger's "logical reasoning" won't notice this.

Enumeration Schemes - WILFPLUS

In 2007, Vince Vatter made the method more powerful by increasing the number of situations in which a point can be declared reversibly deletable.

Enumeration Schemes for Restricted Permutations

VINCENT VATTER ${ }^{1 \dagger}$
${ }^{1}$ School of Mathematics and Statistics, University of St Andrews
St Andrews, Fife KY19 9SS, UK
(e-mail: vince@mcs.st-and.ac.uk
http://turnbull.mcs.st-and.ac.uk/~vince)

Enumeration Schemes - WILFPLUS

Enumeration Schemes for Restricted Permutations

VINCENT VATTER ${ }^{1 \dagger}$
${ }^{1}$ School of Mathematics and Statistics, University of St Andrews
St Andrews, Fife KY19 9SS, UK
(e-mail: vince@mcs.st-and.ac.uk http://turnbull.mcs.st-and.ac.uk/~vince)

Figure 5. The enumeration scheme for $\operatorname{Av}(1234)$.

Enumeration Schemes - Flexible Schemes

Z: When checking if a point is reversibly deletable, can take into account whether a gap between two entries must be empty. can do only a few simple classes

FLEXIBLE SCHEMES AND BEYOND: EXPERIMENTAL ENUMERATION OF PATTERN AVOIDANCE CLASSES

By

Enumeration Schemes - Flexible Schemes

Z: When checking if a point is reversibly deletable, can take into account whether a gap between two entries must be empty. can do only a few simple classes

V: Can take into account when a gap is constrained to have a finite number of entries (and more complicated similar constraints)
can do more classes

Enumeration Schemes - Flexible Schemes

Z: When checking if a point is reversibly deletable, can take into account whether a gap between two entries must be empty. can do only a few simple classes

FLEXIBLE SCHEMES AND BEYOND: EXPERIMENTAL ENUMERATION OF PATTERN AVOIDANCE CLASSES

By
YONAH BIERS-ARIEL

V: Can take into account when a gap is constrained to have a finite number of entries (and more complicated similar constraints)
can do more classes

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could be one entry deletable for some of these possibilities, and a different entry deletable for the other possibilities.
can do even more classes

Enumeration Schemes - Flexible Schemes

Z: When checking if a point is reversibly deletable, can take into account whether a gap between two entries must be empty.

FLEXIBLE SCHEMES AND BEYOND: EXPERIMENTAL ENUMERATION OF PATTERN AVOIDANCE CLASSES

By
YONAH BIERS-ARIEL

(and	Pat length 1	Sym Classes 2	Ins. Enc.	ES	FS	New with FS
$[3]$	2	0	2	2	0	
$[4]$	7	0	2	2	0	
$[5]$	23	0	2	2	0	
$[3],[3]$	5	5	5	5	0	
$[4],[4]$	56	13	33	44	9	
$[4],[5]$	434	30	112	173	59	

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could be one entry deletable for some of these possibilities, and a different entry deletable for the other possibilities.
can do even more classes

rigorous	non-rigorous
- enumeration schemes	
WILE, WILFPLUS, (E)	
Flexible Schemes	

rigorous
non-rigorous

- enumeration schemes

Enumeration schemes for vincular patterns
Andrew M. Baxter ${ }^{\text {ar }}$, Lara K. Pudwell ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematics Department, Pennsylvania State University, State College, PA 08902, United States
${ }^{\text {b }}$ Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, IN 46383, United States

- enumeration schemes

Enumeration schemes for vincular patterns
Andrew M. Baxter ${ }^{\text {a,1 }}$, Lara K. Pudwell ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematics Department, Pennsylvania State University, State College, PA 08902, United States
${ }^{\text {b }}$ Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, IN 46383, United States

- enumeration schemes

Enumeration schemes for vincular patterns

Andrew M. Baxter ${ }^{\text {a,1 }}$, Lara K. Pudwell ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematics Department, Pennsylvania State University, State College, PA 08902, United States
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, IN 46383, United States

Generating Trees

- A "generating tree" for a set of permutations is a way of rigorously representing its structure. It describes where new maximum entries can be inserted into permutations so that they remain in the set.

(Vatter 2007)

Generating Trees

- 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to enumerate the Baxter permutations.

Generating Trees

- 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to enumerate the Baxter permutations.
- 1995/1996: West uses generating trees to enumerate several permutation classes.

Generating Trees

- 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to enumerate the Baxter permutations.
- 1995/1996: West uses generating trees to enumerate several permutation classes.
- 2006: Vatter categorizes the permutation classes that have finitely labeled generating trees and writes the Maple package FINLABEL to enumerate them automatically.

Generating Trees

- 1998 - present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses them to do many things: enumeration, generating functions, exhaustively generating all objects in a fast way, ...

Generating Trees

- 1998 - present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses them to do many things: enumeration, generating functions, exhaustively generating all objects in a fast way, ...

\author{
ECO:AMethodology for the
 Enumeration of Combinatorial Objects
 ```
ELENA BARCUCCI, ALBERTO DEL LUNGO, ELISA PERGOLA
 and RENZO PINZANI*

Generating Trees

-196 Some applications arising from the interactions
between the theory of Catalan-like numbers and the ECO method*

Luca Ferrari ${ }^{\dagger} \quad$ Elisa Pergola ${ }^{\ddagger} \quad$ Renzo Pinzani ${ }^{\ddagger}$
Simone Rinaldi ${ }^{\dagger}$
trees to other combinatorial objects and uses ration, generating functions, exhaustively generating all objects in a fast way, ...

\author{
ECO:AMethodology for the Enumeration of Combinatorial Objects
 ```
ELENA BARCUCCI, ALBERTO DEL LUNGO, ELISA PERGOLA
 and RENZO PINZANI*

Generating Trees

- 196 Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method*

Luca Ferrari ${ }^{\dagger} \quad$ Elisa Pergola ${ }^{\ddagger}$
Renzo Pinzani ${ }^{\ddagger}$
Simone Rinaldi ${ }^{\dagger}$
rrees to

ration, | Integer Partitions in Discrete Dynamical Models |
| :---: |
| and ECO Method |

WaY, ...
Le Manh Ha ${ }^{1}$ and Phan Thi Ha Duong ${ }^{2}$
${ }^{2}$ Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
generating all objects in a fast way, ...

ECO:A Methodology for the Enumeration of Combinatorial Objects

```
ELENA BARCUCCI, ALBERTO DEL LUNGO, ELISA PERGOLA
and RENZO PINZANI*

\section*{Generating Trees}
- 199 Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method*

Luca Ferrari \({ }^{\dagger} \quad\) Elisa Pergola \({ }^{\ddagger}\)
Renzo Pinzani \({ }^{\ddagger}\)
Simone Rinaldi \({ }^{\dagger}\)
trees to \(\begin{gathered}\text { Integer Partitions in Discrete Dynamical Mod } \\ \text { and ECO Method } \\ \text { ration, } \\ \text { Le Manh Ha }\end{gathered}\)
generating all objects in aco Method and the Exhaustive Generation of tnam

\section*{ECO:AM} Enumera

Alberto Del Lungo, Andrea Frosini, and Simone Rinaldi
```

ELENA BARCUC
and RENZO PINZ

```

\section*{Generating Trees}
- 199 Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method*

Luca Ferrari \({ }^{\dagger} \quad\) Elisa Pergola \({ }^{\ddagger} \quad\) Renzo Pinzani \({ }^{\ddagger}\)
Simone Rinaldi \({ }^{\dagger}\)
trees to
ration, \(\begin{gathered}\text { Integer Partitions in Discrete Dynamical Mo } \\ \text { and ECO Method }\end{gathered}\)

Method \(\quad \begin{gathered}\text { Le Manh Ha }{ }^{1} \text { and Phan Thi Ha Duong }{ }^{2}\end{gathered}\)
es

generating all objects in a ECO Method and the Exhaustive Generation of tnam

ECO-generation for some restricted classes of Convex Polyominoes compositions

Alberto Del Lungo, Andrea Frosini, and Simone Rinaldi
Jean-Luc Baril, Phan-Thuan Do
Dipartimento di Scienze Matematiche ed Informatiche
Via del Capitano, 15, 53100, Siena, Italy
\{dellungo,frosini, rinaldi\}@unisi.it

\section*{Generating Trees}
- 19\% Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method*

\section*{trees to}

Integer Partitions in Discrete Dynamical Models and ECO Method \({ }^{\star}\)

Luca Ferrari \({ }^{\dagger} \quad\) Elisa Pergola \({ }^{\ddagger}\)
Renzo Pinzani
Simone Rinaldi \({ }^{\dagger}\)
generating all objects in

\section*{Generating involutions, derangements, and} relatives by ECO

Thi Ha Duong \({ }^{2}\) ty, 34 Le Loi, Hue, Vietnam eneration of tnam
Vincent Vajnovszki
ECO-generation for some restricted classes \(\quad\) LE2I- UMR CNRS, Univessite de Burrgogne, B.P. 47870, 21078 DUON-Ceder France Email: vvajnoveu-bourgogne.fr

\section*{compositions}

Jean-Luc Baril, Phan-Thuan Do
Alberto Del Lungo, Andrea Frosini, and Simone Rinaldi
Dipartimento di Scienze Matematiche ed Informatiche
Via del Capitano, 15, 53100, Siena, Italy
\{dellungo,frosini, rinaldi\}@unisi.it

\section*{Generating Trees}
- 199 Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method*

\section*{rees to}

Integer Partitions in Discrete Dynamical Models and ECO Method \({ }^{\star}\)

Luca Ferrari \({ }^{\dagger} \quad\) Elisa Pergola \({ }^{\ddagger}\)
Renzo Pinzani \(\ddagger\)
Simone Rinaldi \({ }^{\dagger}\)
generating all objects in

\section*{Generating involutions, derangements, and} relatives by ECO
\({ }^{1}\) Thi Ha Duong \({ }^{2}\) tty, 34 Le Loi, Hue, Vietnam eneration of tnam
Vincent Vajnovszki
LE2I- UMR CNNS, Universite de Bourgogne, B.P.47870, 21078 DJON-Cedex France. compositions

Alberto Del Lungo, Andrea Frosini, and Simone Rinaldi
Jean-Luc Baril, Phan-Thuan Do
- On Thursday: More algorithms for exhaustive generation!
\begin{tabular}{|c|l|}
\multicolumn{1}{c|}{ rigorous } & non-rigorous \\
\hline - enumeration schemes & \\
WILE, WILFPLUS, (E) & \\
Flexible Schemes (E) & \\
\hline - generating trees (E) & \\
\hline - HERB \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\multicolumn{1}{c|}{ rigorous } & non-rigorous \\
\hline - enumeration schemes & \\
WILE, WILFPLUS, (E) & \\
Flexible Schemes (E) & \\
\hline - generating trees (E) & \\
\hline - HERB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ rigorous } & non-rigorous \\
\hline - enumeration schemes & \\
WILE, WILFPLUS, (E) & \\
Flexible Schemes (E) & \\
\hline - generating trees (E) & \\
\hline - HERB \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & non-rigorous \\
\hline - enumeration schemes & \\
& WILE WILFPLUS, (E) \\
Flexible Schemes & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & \\
& WILF, WILFPLUS, (E) \\
Flexible Schemes (E) & \\
\hline
\end{tabular}

\section*{Struct}
"expand a particular structure tree and hope it ends up being finite"

Struct is a software package that takes a permutation class as input and searches for a set cover that decomposes it into simpler disjoint parts.


Figure 1. The structure of \(\operatorname{Av}(231)\)

\section*{Struct}
\[
\mathscr{G}_{4}=\operatorname{Av}(321,1324)
\]

AUTOMATIC DISCOVERY OF STRUCTURAL RULES OF PERMUTATION CLASSES


\section*{Struct}

\title{
AUTOMATIC DISCOVERY OF STRUCTURAL RULES
} OF PERMUTATION CLASSES
Method:
- Construct a big list of grids that make subsets of the input class.
- Set up an integer linear programming problem to pick a subset of grids that forms a set cover (each permutation in the class gives one constraint).
- Feed it into an ILP solver like Gurobi and wait patiently for a solution.
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & - Struct \\
WILE, WILFPLUS, (E) & - BiS \\
Flexible Schemes (E) & \\
\hline & \\
\hline - generating trees (E) & -HERB \\
- FINLABEL & \\
- ECO Method & \\
- Combinatorial Generation & \\
- Regular Insertion Enc. & \\
- Finite Simples - Poly Classes &
\end{tabular}

\section*{Combinatorial Exploration}

At the end of the Struct paper, the authors discuss some classes that Struct can't do along with a possible future approach.

"proof tree"

\section*{Combinatorial Exploration}

\section*{I started talking with Henning Ulfarsson and Christian Bean at PP 2016.}

\section*{6 years later...}
```

[Submitted on 15 Feb 2022 (v1), last revised 8 Aug 2022 (this version, v2)]
Combinatorial Exploration: An algorithmic framework for enumeration
Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, Henning Ulfarsson
Combinatorial Exploration is a new domain-agnostic algorithmic framework to automatically and rigorously study the structure of combinatorial objects
and derive their counting sequences and generating functions. We describe how it works and provide an open-source Python implementation. As a
prerequisite, we build up a new theoretical foundation for combinatorial decomposition strategies and combinatorial specifications.
We then apply Combinatorial Exploration to the domain of permutation patterns, to great effect. We rederive hundreds of results in the literature in a
uniform manner and prove many new ones. These results can be found in a new public database, the Permutation Pattern Avoidance Library (PermPAL) at
this https URL. Finally, we give three additional proofs-of-concept, showing examples of how Combinatorial Exploration can prove results in the domains
of alternating sign matrices, polyominoes, and set partitions.

```

\section*{Combinatorial Exploration}

Key insights:
1. Instead of expanding one particular structure tree and hoping it ends up being finite: produce a bunch of independent "rules" that relate a parent set to child sets, and hope that some subset of these rules can be assembled into a tree

\section*{Combinatorial Exploration}

Key insights:
1. Instead of expanding one particular structure tree and hoping it ends up being finite: produce a bunch of independent "rules" that relate a parent set to child sets, and hope that some subset of these rules can be assembled into a tree
2. We need a much more efficient way to represent sets of permutations.

\section*{Combinatorial Exploration}

Key insights:
1. Instead of expanding one particular structure tree and hoping it ends up being finite: produce a bunch of independent "rules" that relate a parent set to child sets, and hope that some subset of these rules can be assembled into a tree
2. We need a much more efficient way to represent sets of permutations.
3. If (1) and (2) are done correctly, then the result can still be fully rigorous.
\[
\begin{aligned}
& C=A_{v}(132) \\
& C^{+}= \text {nonempty } \\
& \text { perms }
\end{aligned}
\]
empty or not
point placement row/col separation
factor
\(C=A v(132)\)
\(C^{+}=\)nonempty
perms
empty or not
point placement row/col separation
factor
\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\begin{array}{l}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\text {nonempty } \\
\text { perms }
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\text {nonempty } \\
\text { perms }
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A v(132) \\
C^{+}=\begin{array}{c}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A v(132) \\
C^{+}=\underset{\text { nonempty }}{ } \begin{array}{c}
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{aligned}
& C=A_{v}(132) \\
& C^{+}= \text {nonempty } \\
& \text { perms }
\end{aligned}
\]


\[
\begin{gathered}
C=A v(132) \\
C^{+}=\underset{\text { nonempty }}{ } \begin{array}{c}
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\text {nonempty } \\
\text { perms }
\end{gathered}
\]
empty or not


\[
\begin{gathered}
C=A v(132) \\
C^{+}=\underset{\text { nonempty }}{ } \begin{array}{c}
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\begin{array}{c}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation


\(C=\operatorname{Av}(132)\)
\(C^{+}=\begin{gathered}\text { nonempty } \\ \text { perms }\end{gathered}\)
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A v(132) \\
C^{+}=\begin{array}{c}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\[
\begin{gathered}
C=A v(132) \\
C^{+}=\begin{array}{c}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\(C=A v(132)\)
\(C^{+}=\begin{gathered}\text { nonempty } \\ \text { perms }\end{gathered}\)


\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\text {nonempty } \\
\text { perms }
\end{gathered}
\]


\[
\begin{aligned}
& C=A_{v}(132) \\
& C^{+}= \text {nonempty } \\
& \text { perms }
\end{aligned}
\]
empty or not
point placement
row/col separation
factor

\[
\begin{gathered}
\text { empty or not } \\
\text { point placement } \\
\text { row/col separation } \\
\text { factor }
\end{gathered}
\]

empty or not
point placement
row/col separation
factor


empty or not point placement row/col separation
factor

empty or not point placement
row/col separation
factor

empty or not point placement row/col separation
factor

empty or not point placement row/col separation

empty or not point placement row/col separation
factor

empty or not point placement row/col separation
factor




skipping ahead...
empty or not point placement row/col separation factor





skipping ahead...
empty or not point placement row/col separation factor


skipping ahead...
empty or not point placement row/col separation
factor


skipping ahead...
empty or not point placement row/col separation
factor


skipping ahead...
empty or not point placement row/col separation
factor


skipping ahead...
empty or not point placement row/col separation
factor


empty or not point placement row/col separation
factor

empty or not point placement row/col separation
factor

\[
\begin{gathered}
C=A_{v}(132) \\
C^{+}=\begin{array}{l}
\text { nonempty } \\
\text { perms }
\end{array}
\end{gathered}
\]
empty or not
point placement row/col separation
factor

\(C=A_{v}(132)\)
\(C^{+}=\begin{gathered}\text { nonempty } \\ \text { perms }\end{gathered}\)
empty or not
point placement row/col separation
factor

\(C=A_{v}(132)\)
\(C^{+}=\)nonempty
perms
empty or not
point placement row/col separation
factor

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.
- Apply them to the set of permutations you want to enumerate.

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.
- Apply them to the set of permutations you want to enumerate. and then to the children they produced

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.
- Apply them to the set of permutations you want to enumerate. and then to the children they produced and then to the children they produced

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.
- Apply them to the set of permutations you want to enumerate. and then to the children they produced and then to the children they produced and then to the children they produced

\section*{Combinatorial Exploration}

General outline:
- Teach the computer a set of strategies.
- Apply them to the set of permutations you want to enumerate.
and then to the children they produced
and then to the children they produced and then to the children they produced
- Each time you apply a strategy to a set, you make a puzzle piece. Search the pile of puzzle pieces for a subset that makes a combinatorial specification. If you find one, you win!
polynomial-time counting algorithm, system of equations for the GF, uniform random sampling routine, exhaustive generation (but slow)

\section*{Tilings}

You have to represent infinite sets of permutations on your finite computer.

\section*{Tilings}

You have to represent infinite sets of permutations on your finite computer.
So with any computational method, you have to decide on a finite representation for some sets of permutations.

\section*{Tilings}

You have to represent infinite sets of permutations on your finite computer.
So with any computational method, you have to decide on a finite representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a representation called a "Tiling".

\section*{Tilings}

You have to represent infinite sets of permutations on your finite computer.
So with any computational method, you have to decide on a finite representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a representation called a "Tiling".

A tiling is a grid of cells that has "obstructions" that tell you patterns that can't appear, and "requirements" that tell you patterns that must appear.

\section*{Tilings}


Tilings


Tilings


531624

\section*{Tilings}

The key innovation is that as you perform strategies on tilings, you can keep track of exactly where bad patterns can be formed.

So unlike most other methods, you don't have to constantly generate permutations at every step to recompute this, which makes applying the strategies very fast.

\section*{Combinatorial Exploration}


\section*{Combinatorial Exploration}

\(\operatorname{Av}(1243,1342,2143)\)
The algorithm generates about 5,400 rules before it finds this subset of 10 rules that makes a rigorous specification.

55 seconds

\section*{Combinatorial Exploration}

We can find combinatorial specifications for:
- 6 out of 7 of the classes avoiding 1 pattern of length 4

First direct enumerations of \(\operatorname{Av}(1342)\) and \(\operatorname{Av}(2413)\)
- All 56 classes avoiding 2 patterns of length 4

3 are conjectured to be non-D-finite
can derive the algebraic GF for the other 53
- All 317 classes avoiding 3 patterns of length 4
- All classes avoiding 4 or more patterns of length 4

\section*{Combinatorial Exploration}

We can find combinatorial specifications for:
- 1324-avoiding domino permutations
- Preimage of \(\operatorname{Av}(321)\) under West-stack-sorting
\[
\operatorname{Av}(34251,35241,45231)
\]
- LCI Schubert Varieties
\[
\operatorname{Av}(52341,53241,52431,35142,42513,351624)
\]
-"Box classes" like \(\operatorname{Av}(1 \square 2 \square 3)\) and \(\operatorname{Av}(1 \square \square 32)\)
- "POP classes"
- Permutations corresponding to Schubert varieties with a complete parabolic bundle structure
\(\operatorname{Av}(3412,52341,635241)\)

\section*{Combinatorial Exploration}

\section*{https://permpal.com}

\section*{PermPAL}

\section*{The Permutation Pattern Avoidance Library (PermPAL)}

PermPAL is a database of algorithmically-derived theorems about permutation classes.
The Combinatorial Exploration framework produces rigorously verified combinatorial specifications for families of combinatorial objects. These specifications then lead to generating functions, counting sequence, polynomial-time counting algorithms, random sampling procedures, and more.

This database contains 23,845 permutation classes for which specifications have been automatically found. This includes many classes that have been previously enumerated by other means and many classes that have not been previously enumerated

Some Notables Successes:
- 6 out of 7 of the principal classes of length 4
- all 56 symmetry classes avoiding two patterns of length 4
- all 317 symmetry classes avoiding three patterns of length 4
- the "domino set" used by Bevan, Brignall, Elvey Price, and Pantone to investigate Av(1324)
- the class Av \((3412,52341,635241)\) of Alland and Richmond corresponding a type of Schubert variety
- the class \(\operatorname{Av}(2341,3421,4231,52143)\) equal to the (Av(12), Av(21))-staircase (see Albert, Pantone, and Vatter), which appears to be non-D-finite
- all of the permutation classes counted by the Schröder numbers conjectured by Eric Egge
- the class Av( \(34251,35241,45231)\), equal to the preimage of Av(321) under the West-stack-sorting operation (see Defant)

Section 2.4 of the article Combinatorial Exploration: An Algorithmic Framework for Enumeration gives a more comprehensive list of notable results.

The comb spec searcher github repository contains the open-source python framework for Combinatorial Exploration, and the tilings github repository contains the code needed to apply it to the field of permutation patterns.

\section*{\(\operatorname{Av}(2143,3412)\)}

View Raw Data
\[
\begin{aligned}
& \text { Generating Function } \\
& \frac{3 x-1}{\sqrt{-4 x+1}(2 x-1)} \\
& \text { Copy to clipboard: latex Maple } \text { sympy Search on PermPAL } \\
& \text { Recurrence } \\
& \begin{array}{l}
a(0)=1 \\
a(1)=1 \\
a(2)=2 \\
a(n+3)=\frac{12(1+2 n) a(n)}{n+3}-\frac{2(16+13 n) a(n+1)}{n+3}+\frac{(19+9 n) a(n+2)}{n+3}, \\
\text { Copy to clipboard: latex Maple }
\end{array}
\end{aligned}
\]

\section*{Counting Sequence}

1, 1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964, 18330728,
\[
\begin{array}{|l|l|}
\hline \text { Copy } 101 \text { terms to clipboard } & \text { Search on OEIS } \\
\end{array}
\]

Implicit Equation for the Generating Function
\[
(4 x-1)(2 x-1)^{2} F(x)^{2}+(3 x-1)^{2}=0
\]
Copy to clipboard: latex Maple Search on PermPAL

Heatmap
To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker \(=\) more).

\section*{\(\operatorname{Av}(2143,3412)\)}

View Raw Data
\[
\begin{aligned}
& \text { Generating Function } \\
& \frac{3 x-1}{\sqrt{-4 x+1}(2 x-1)} \\
& \text { Copy to clipboard: latex Maple } \text { sympy Search on PermPAL } \\
& \text { Recurrence } \\
& \begin{array}{l}
a(0)=1 \\
a(1)=1 \\
a(2)=2 \\
a(n+3)=\frac{12(1+2 n) a(n)}{n+3}-\frac{2(16+13 n) a(n+1)}{n+3}+\frac{(19+9 n) a(n+2)}{n+3}, \\
\text { Copy to clipboard: latex Maple }
\end{array}
\end{aligned}
\]

\section*{Counting Sequence}

1, 1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964, 18330728,
\[
\begin{array}{|l|l|}
\hline \text { Copy } 101 \text { terms to clipboard } & \text { Search on OEIS } \\
\end{array}
\]

Implicit Equation for the Generating Function
\[
(4 x-1)(2 x-1)^{2} F(x)^{2}+(3 x-1)^{2}=0
\]
Copy to clipboard: latex Maple Search on PermPAL

Heatmap
To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker \(=\) more).
\(a(n+3)=\frac{2(1)}{n+3}-\frac{2(10+1}{n+3}+\frac{15+3}{n+3}\),


This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Isolated" and has 29 rules.


This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Isolated" and has 29 rules.

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Isolated" and has 29 rules.

Found on April 21, 2021.
Finding the specification took 653 seconds.

Proof Tree

Copy to clipboard: specification json pack json
View tree on standalone page.


This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Isolated" and has 29 rules.

Found on April 21, 2021.
Finding the specification took 653 seconds.

Proof Tree

Copy to clipboard: specification json pack json
View tree on standalone page




Copy 29 equations to clipboard: \(\qquad\) Maple sympy
\(F_{0}(x)=F_{1}(x)+F_{2}(x)\)
\(F_{1}(x)=1\)
\(F_{2}(x)=F_{3}(x) F_{5}(x)\)
\(F_{3}(x)=F_{0}(x)+F_{4}(x)\)
\(F_{4}(x)=F_{5}(x) F_{6}(x)\)
\(F_{5}(x)=x\)
\(F_{6}(x)=F_{28}(x)+F_{3}(x)+F_{7}(x)\)
\(F_{7}(x)=F_{5}(x) F_{8}(x)\)
\(F_{8}(x)=F_{9}(x, 1)\)
\(F_{9}(x, y)=F_{10}(x, y)+F_{16}(x)+F_{26}(x, y)\)
\(F_{10}(x, y)=F_{11}(x, y)+F_{15}(x, y)\)
\(F_{11}(x, y)=F_{1}(x)+F_{12}(x, y)+F_{13}(x, y)\)
\(F_{12}(x, y)=F_{10}(x, y) F_{5}(x)\)
\(F_{13}(x, y)=F_{11}(x, y) F_{14}(x, y)\)
\(F_{14}(x, y)=y x\)
\(F_{15}(x, y)=F_{5}(x) F_{9}(x, y)\)
\(F_{16}(x)=F_{17}(x) F_{5}(x)\)
\(F_{17}(x)=F_{18}(x, 1)\)
\(F_{18}(x, y)=F_{19}(x, y)+F_{24}(x, y)+F_{7}(x)\)
\(F_{19}(x, y)=F_{20}(x, y)+F_{23}(x, y)\)
\(F_{20}(x, y)=F_{1}(x)+F_{21}(x, y)+F_{22}(x, y)\)
\(F_{21}(x, y)=F_{19}(x, y) F_{5}(x)\)
\(F_{22}(x, y)=F_{14}(x, y) F_{20}(x, y)\)
\(F_{23}(x, y)=F_{18}(x, y) F_{5}(x)\)
\(F_{24}(x, y)=F_{25}(x, y) F_{5}(x)\)
\(F_{25}(x, y)=-\frac{-y F_{18}(x, y)+F_{18}(x, 1)}{-1+y}\)
\(F_{26}(x, y)=F_{27}(x, y) F_{5}(x)\)
\(F_{27}(x, y)=-\frac{-y F_{9}(x, y)+F_{9}(x, 1)}{-1+y}\)
\(F_{28}(x)=F_{17}(x) F_{5}(x)\)

\section*{Combinatorial Exploration}

\(\operatorname{Av}(1324,4231)\)

\(\operatorname{Av}(1432,3214)\)


\section*{Combinatorial Exploration}

Much of the theory we've developed is not specific to permutation patterns.

\section*{Combinatorial Exploration}

Much of the theory we've developed is not specific to permutation patterns.
- rigorous definition of "combinatorial strategy" as a component of combinatorial specifications

\section*{Combinatorial Exploration}

Much of the theory we've developed is not specific to permutation patterns.
- rigorous definition of "combinatorial strategy" as a component of combinatorial specifications
- algorithm to search giant set of rules for a subset that is a combinatorial specification

\section*{Combinatorial Exploration}

Much of the theory we've developed is not specific to permutation patterns.
- rigorous definition of "combinatorial strategy" as a component of combinatorial specifications
- algorithm to search giant set of rules for a subset that is a combinatorial specification
- working with gridded versions of objects internally, represented by obstructions and requirements

\section*{Combinatorial Exploration}

Much of the theory we've developed is not specific to permutation patterns.
- rigorous definition of "combinatorial strategy" as a component of combinatorial specifications
- algorithm to search giant set of rules for a subset that is a combinatorial specification
- working with gridded versions of objects internally, represented by obstructions and requirements

Combinatorial Exploration is domain-agnostic and can be used in other fields

\section*{Combinatorial Exploration}

Enumerative perspectives on chord diagrams
by
Lukas Nabergall


Figure 2.4: A visual representation of the proof tree for noncrossing diagrams \(\mathcal{D}(\nsim)\).

A thesis
presented to the University of Waterloo in fulfillment of the

\section*{Combinatorial Exploration}

Enumerative perspectives on chord diagrams
by

Lukas Nabergall

\begin{tabular}{|c|c|}
\hline & \(\xi\) \\
\hline\(\bullet\) & \\
\hline & \\
\hline & \(\xi^{*}\) \\
\hline\(\cdot\) & \\
\hline
\end{tabular}


A thesis

\section*{Combinatorial Exploration}

Set Partitions

\(T_{1}(x)=1+\left(x+x^{2}\right) T_{1}(x)+x^{3} \frac{d}{d x} T_{1}(x)\)

\[
T_{1}(x)=\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}
\]
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & - Struct \\
WILF, WILFPLUS, (E) & - BiSC \\
Flexible Schemes & \\
- Combinatorial Exploration & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & - Struct \\
WILF, WILFPLUS, (E) & - BiSC \\
Flexible Schemes & - GuessFunc \\
- Combinatorial Exploration & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & - Struct \\
WILF, WILFPLUS, (E) & - BiSC \\
Flexible Schemes & - GuessFunc \\
- Combinatorial Exploration & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{1}{c|}{ rigorous } & \multicolumn{1}{c|}{ non-rigorous } \\
\hline - enumeration schemes & - Struct \\
WILF, WILFPLUS, (E) & - BiSC \\
Flexible Schemes (E) & - GuessFunc \\
- Combinatorial Exploration & \\
\hline
\end{tabular}


PermLab


PermLab


PermLab


\section*{Permutation Patterns: Easy or Hard?}

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998


Apology. The success rate of the present method, in its present state, is somewhat disappointing. Ekhad was able to reproduce the classical cases and a few new ones, but for most patterns and sets of patterns, it failed to find a scheme (defined below) of reasonable depth. But the present framework for setting up a scheme could be modified and extended in various ways. We do believe that an appropriate enhancement of the present method would yield, if not a \(100 \%\) success rate, at least close to it.

\section*{Permutation Patterns: Easy or Hard?}

Enumeration Schemes and, More Importantly, Their Automatic Generation

Doron Zeilberger*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA zeilberg@math.temple.edu, http://www.math.temple.edu/~zeilberg
Received May 27, 1998


Apology. The success rate of the present method, in its present state, is somewhat disappointing. Ekhad was able to reproduce the classical cases and a few new ones, but for most patterns and sets of patterns, it failed to find a scheme (defined below) of reasonable depth. But the present framework for setting up a scheme could be modified and extended in various ways We do believe that an appropriate enbancement of the present method would yield if not a \(100 \%\) success rate, at least close to it.

\section*{Permutation Patterns: Easy or Hard?}

\section*{Permutation Patterns: Easy or Hard? \\ Impossible}

\section*{Permutation Patterns: Easy or Hard?}

Impossible
Garrabrant and Pak proved that there are classes with a finite basis for which there exists no polynomial-time counting algorithm!

\section*{Permutation Patterns: Easy or Hard?}

Impossible
Garrabrant and Pak proved that there are classes with a finite basis for which there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for \(\operatorname{Av(1324)?~}\)

\section*{Permutation Patterns: Easy or Hard? \\ Impossible}

Garrabrant and Pak proved that there are classes with a finite basis for which there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for \(\operatorname{Av}(1324)\) ?

What about the classes that avoid a single pattern of length 5, like \(\operatorname{Av(24135)?~}\)

\section*{Permutation Patterns: Easy or Hard? \\ Impossible}

Garrabrant and Pak proved that there are classes with a finite basis for which there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for \(\operatorname{Av}(1324)\) ?

What about the classes that avoid a single pattern of length 5, like \(\operatorname{Av(24135)?~}\)

25 years from now, how will the role of computers in our research be different?

\section*{ \\ }

\section*{10 years and 2 days ago...}


\section*{ENUMERATION OF AV \((3124,4312)\)}

PeRMuTITAOON Patitenls 2013
Jay Pantone
University of Florida```

