
Computational and Experimental
Methods in Permutation Patterns

Jay Pantone
Marquette University

Permutation Patterns 2023
Dijon, France

25 years ago…

25 years ago…

25 years ago…

25 years ago…

What’s the state of computation and experimentation in Permutation Patterns?

Enumeration Schemes
Goal: Teach the computer how to search for
 structure in a permutation class.

Enumeration Schemes
Goal: Teach the computer how to search for
 structure in a permutation class.

Input: A basis for a permutation class.

Enumeration Schemes
Goal: Teach the computer how to search for
 structure in a permutation class.

Input: A basis for a permutation class.

Output: An “enumeration scheme” that describes how larger permutations in
 the class can be recursively described in terms of smaller
 permutations in the class.

Enumeration Schemes
Goal: Teach the computer how to search for
 structure in a permutation class.

Input: A basis for a permutation class.

Output: An “enumeration scheme” that describes how larger permutations in
 the class can be recursively described in terms of smaller
 permutations in the class.

Enumeration Scheme
A polynomial-time algorithm to compute the
number of permutations of length .n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Define .A(n) := Avn(123)

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Define .A(n) := Avn(123)

Every non-empty permutation has a minimum entry somewhere.

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Define .A(n) := Avn(123)

Every non-empty permutation has a minimum entry somewhere.

Define .A1(n, i) := {π ∈ A(n) : π(i) = 1}

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Define .A(n) := Avn(123)

Every non-empty permutation has a minimum entry somewhere.

Obviously .A(n) =
n

⋃
i=1

A1(n, i)

Define .A1(n, i) := {π ∈ A(n) : π(i) = 1}

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

If , then the entry is either to the left or to the right of .n ≥ 2 2 1

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

If , then the entry is either to the left or to the right of .n ≥ 2 2 1

Define
 and

A12(n, i, j) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i < j}
A21(n, j, i) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i > j}

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

If , then the entry is either to the left or to the right of .n ≥ 2 2 1

Obviously .A1(n, i) =
i−1

⋃
j=1

A21(n, j, i) ∪
n

⋃
j=i+1

A12(n, i, j)

Define
 and

A12(n, i, j) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i < j}
A21(n, j, i) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i > j}

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

If , then the entry is either to the left or to the right of .n ≥ 2 2 1

Obviously .A1(n, i) =
i−1

⋃
j=1

A21(n, j, i) ∪
n

⋃
j=i+1

A12(n, i, j)

We could do this forever…

Define
 and

A12(n, i, j) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i < j}
A21(n, j, i) := {π ∈ A(n) : π(i) = 1, π(j) = 2, i > j}

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) |

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 1: |A21(n, j, i) | = |A1(n − 1, j) | ✓

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

Claim 2: |A12(n, i, j) | = { 0, j < n
|A1(n − 1, i) | , j = n ✓

Enumeration Schemes
“The Most Trivial Non-Trivial Example” — Av(123)

A(n) =
n

⋃
i=1

A1(n, i)

A1(n, i) =
i−1

⋃
j=1

A21(n, j, i) ∪
n

⋃
j=i+1

A12(n, i, j)

A21(n, j, i) ≅ A1(n − 1,j)

A12(n, i, j) ≅ { ∅ , j < n
A1(n − 1,i), j = n

Enumeration Schemes
Big Picture:

‣ The computer splits the whole set further
and further based on the pattern formed by the bottom entries.

A(n)

Enumeration Schemes
Big Picture:

‣ The computer splits the whole set further
and further based on the pattern formed by the bottom entries.

A(n)

‣ At each step it checks if any of the entries are “reversibly deletable”. If so,
this branch of the search tree doesn’t need to be split further.

Enumeration Schemes
Big Picture:

‣ The computer splits the whole set further
and further based on the pattern formed by the bottom entries.

A(n)

‣ At each step it checks if any of the entries are “reversibly deletable”. If so,
this branch of the search tree doesn’t need to be split further.

‣ If all branches finish, we get an enumeration scheme, which gives us a
polynomial-time algorithm to count the number of permutations of length

, but does not give us the generating function. n

Enumeration Schemes
Zeilberger’s method is:

Experimental: when you “hit go”, you don’t know whether
 or not it will return an answer

 Rigorous: if it does give an answer, it’s guaranteed to
 be correct

Enumeration Schemes — WILFPLUS
In 2007, Vince Vatter made the method more
powerful by increasing the number of situations in
which a point can be declared reversibly deletable.

Av(1342,1432)

Enumeration Schemes — WILFPLUS
In 2007, Vince Vatter made the method more
powerful by increasing the number of situations in
which a point can be declared reversibly deletable.

Av(1342,1432)

Enumeration Schemes — WILFPLUS
In 2007, Vince Vatter made the method more
powerful by increasing the number of situations in
which a point can be declared reversibly deletable.

Av(1342,1432)

Enumeration Schemes — WILFPLUS
In 2007, Vince Vatter made the method more
powerful by increasing the number of situations in
which a point can be declared reversibly deletable.

Av(1342,1432)

Enumeration Schemes — WILFPLUS
In 2007, Vince Vatter made the method more
powerful by increasing the number of situations in
which a point can be declared reversibly deletable.

Av(1342,1432)

Enumeration Schemes — WILFPLUS

Enumeration Schemes — Flexible Schemes
Z: When checking if a point is reversibly
deletable, can take into account whether a
gap between two entries must be empty.

can do only a few simple classes

Enumeration Schemes — Flexible Schemes
Z: When checking if a point is reversibly
deletable, can take into account whether a
gap between two entries must be empty.

can do only a few simple classes

V: Can take into account when a gap is constrained to have a finite number of entries
(and more complicated similar constraints)

can do more classes

Enumeration Schemes — Flexible Schemes
Z: When checking if a point is reversibly
deletable, can take into account whether a
gap between two entries must be empty.

can do only a few simple classes

V: Can take into account when a gap is constrained to have a finite number of entries
(and more complicated similar constraints)

can do more classes

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could
be one entry deletable for some of these possibilities, and a different entry deletable
for the other possibilities.

can do even more classes

Enumeration Schemes — Flexible Schemes
Z: When checking if a point is reversibly
deletable, can take into account whether a
gap between two entries must be empty.

can do only a few simple classes

V: Can take into account when a gap is constrained to have a finite number of entries
(and more complicated similar constraints)

can do more classes

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could
be one entry deletable for some of these possibilities, and a different entry deletable
for the other possibilities.

can do even more classes

Generating Trees
‣ A “generating tree” for a set of permutations is a way of rigorously

representing its structure. It describes where new maximum entries can be
inserted into permutations so that they remain in the set.

(Vatter 2007)

Generating Trees
‣ 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to

enumerate the Baxter permutations.

Generating Trees
‣ 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to

enumerate the Baxter permutations.

‣ 1995/1996: West uses generating trees to enumerate several permutation
classes.

Generating Trees
‣ 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to

enumerate the Baxter permutations.

‣ 1995/1996: West uses generating trees to enumerate several permutation
classes.

‣ 2006: Vatter categorizes the permutation classes that have finitely labeled
generating trees and writes the Maple package FINLABEL to enumerate them
automatically.

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

Generating Trees
‣ 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, …

‣ On Thursday: More algorithms for exhaustive generation!

Struct
Most of the methods described so far:
 “expand a particular structure tree and
 hope it ends up being finite”

Struct is a software package that takes a permutation class as input and
searches for a set cover that decomposes it into simpler disjoint parts.

Struct
𝒢4 = Av(321,1324)

Struct
Method:

‣ Construct a big list of grids that make
 subsets of the input class.

‣ Set up an integer linear programming problem to pick a subset of grids that
forms a set cover (each permutation in the class gives one constraint).

‣ Feed it into an ILP solver like Gurobi and wait patiently for a solution.

Combinatorial Exploration
At the end of the Struct paper, the authors discuss some classes that Struct
can’t do along with a possible future approach.

“proof tree”

Combinatorial Exploration
I started talking with Henning Ulfarsson and Christian Bean at PP 2016.

6 years later…

Combinatorial Exploration
Key insights:

1. Instead of expanding one particular structure tree and hoping it ends up
being finite: produce a bunch of independent “rules” that relate a parent
set to child sets, and hope that some subset of these rules can be
assembled into a tree

Combinatorial Exploration
Key insights:

1. Instead of expanding one particular structure tree and hoping it ends up
being finite: produce a bunch of independent “rules” that relate a parent
set to child sets, and hope that some subset of these rules can be
assembled into a tree

2. We need a much more efficient way to represent sets of permutations.

Combinatorial Exploration
Key insights:

1. Instead of expanding one particular structure tree and hoping it ends up
being finite: produce a bunch of independent “rules” that relate a parent
set to child sets, and hope that some subset of these rules can be
assembled into a tree

2. We need a much more efficient way to represent sets of permutations.

3. If (1) and (2) are done correctly, then the result can still be fully rigorous.

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.
and then to the children they produced

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.
and then to the children they produced

and then to the children they produced

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.
and then to the children they produced

and then to the children they produced
and then to the children they produced

…

Combinatorial Exploration
General outline:

‣ Teach the computer a set of strategies.

‣ Apply them to the set of permutations you want to enumerate.
and then to the children they produced

and then to the children they produced
and then to the children they produced

…
‣ Each time you apply a strategy to a set, you make a puzzle piece. Search the

pile of puzzle pieces for a subset that makes a combinatorial specification. If
you find one, you win!

polynomial-time counting algorithm, system of equations for the GF,
 uniform random sampling routine, exhaustive generation (but slow)

Tilings
You have to represent infinite sets of permutations on your finite computer.

Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite
representation for some sets of permutations.

Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite
representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a
representation called a “Tiling”.

Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite
representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a
representation called a “Tiling”.

A tiling is a grid of cells that has “obstructions” that tell you patterns that can’t
appear, and “requirements” that tell you patterns that must appear.

Tilings

Tilings

Tilings

Tilings
The key innovation is that as you perform strategies on tilings, you can keep
track of exactly where bad patterns can be formed.

So unlike most other methods, you don’t have to constantly generate
permutations at every step to recompute this, which makes applying the
strategies very fast.

Combinatorial Exploration

Combinatorial Exploration
Av(1243, 1342, 2143)

The algorithm generates about
5,400 rules before it finds this
subset of 10 rules that makes a
rigorous specification.

55 seconds

Combinatorial Exploration
We can find combinatorial specifications for:

‣ 6 out of 7 of the classes avoiding 1 pattern of length 4
First direct enumerations of and Av(1342) Av(2413)

‣ All 56 classes avoiding 2 patterns of length 4
3 are conjectured to be non-D-finite
can derive the algebraic GF for the other 53

‣ All 317 classes avoiding 3 patterns of length 4

‣ All classes avoiding 4 or more patterns of length 4

Combinatorial Exploration
We can find combinatorial specifications for:

‣ 1324-avoiding domino permutations

‣ Preimage of under West-stack-sorting

Av(321)
Av(34251, 35241, 45231)

‣ LCI Schubert Varieties
 Av(52341, 53241, 52431, 35142, 42513, 351624)

‣ “Box classes” like and Av(1 □ 2 □ 3) Av(1 □ □ 32)

‣ “POP classes”

‣ Permutations corresponding to Schubert varieties with a complete parabolic
bundle structure
 Av(3412, 52341, 635241)

Combinatorial Exploration
https://permpal.com

https://permpal.com

Combinatorial Exploration

Av(1234, 1243) Av(1234, 1324) Av(1234, 1342) Av(1234, 1432) Av(1234, 2143) Av(1234, 2341) Av(1234, 2413) Av(1234, 2431) Av(1234, 3412)

Av(1234, 3421) Av(1234, 4231) Av(1243, 1324) Av(1243, 1342) Av(1243, 1432) Av(1243, 2134) Av(1243, 2143) Av(1243, 2314) Av(1243, 2341)

Av(1243, 2413) Av(1243, 2431) Av(1243, 3214) Av(1243, 3241) Av(1243, 3412) Av(1243, 3421) Av(1243, 4231) Av(1324, 1342) Av(1324, 1432)

Av(1324, 2143) Av(1324, 2341) Av(1324, 2413) Av(1324, 2431) Av(1324, 3412) Av(1324, 4231) Av(1342, 1423) Av(1342, 1432) Av(1342, 2143)

Av(1342, 2314) Av(1342, 2341) Av(1342, 2413) Av(1342, 2431) Av(1342, 3124) Av(1342, 3142) Av(1342, 3214) Av(1342, 3241) Av(1342, 3412)

Av(1342, 4123) Av(1342, 4213) Av(1432, 2143) Av(1432, 2341) Av(1432, 2413) Av(1432, 3214) Av(1432, 3412) Av(2143, 2413) Av(2143, 3412)

Av(2413, 3142) Av(1234) Av(1243) Av(1432)

1

Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

‣ rigorous definition of “combinatorial strategy” as a component of
combinatorial specifications

Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

‣ rigorous definition of “combinatorial strategy” as a component of
combinatorial specifications

‣ algorithm to search giant set of rules for a subset that is a combinatorial
specification

Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

‣ rigorous definition of “combinatorial strategy” as a component of
combinatorial specifications

‣ algorithm to search giant set of rules for a subset that is a combinatorial
specification

‣working with gridded versions of objects internally, represented by
obstructions and requirements

Combinatorial Exploration
Much of the theory we’ve developed is not specific to permutation patterns.

‣ rigorous definition of “combinatorial strategy” as a component of
combinatorial specifications

‣ algorithm to search giant set of rules for a subset that is a combinatorial
specification

‣working with gridded versions of objects internally, represented by
obstructions and requirements

Combinatorial Exploration is domain-agnostic and can be used in other fields

Combinatorial Exploration

Combinatorial Exploration

Combinatorial Exploration

 T1(x) = 1 + (x + x2)T1(x) + x3 d
dx

T1(x)

Set Partitions
Polyominoes

T1(x) =
∞

∏
i=1

1
1 − xi

Permutation Patterns: Easy or Hard?

Permutation Patterns: Easy or Hard?

A bit optimistic!

Permutation Patterns: Easy or Hard?

Permutation Patterns: Easy or Hard?

Permutation Patterns: Easy or Hard?
Garrabrant and Pak proved that there are classes with a finite basis for which
there exists no polynomial-time counting algorithm!

Permutation Patterns: Easy or Hard?
Garrabrant and Pak proved that there are classes with a finite basis for which
there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for ?Av(1324)

Permutation Patterns: Easy or Hard?
Garrabrant and Pak proved that there are classes with a finite basis for which
there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for ?Av(1324)

What about the classes that avoid a single pattern of length 5, like ?Av(24135)

Permutation Patterns: Easy or Hard?
Garrabrant and Pak proved that there are classes with a finite basis for which
there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for ?Av(1324)

What about the classes that avoid a single pattern of length 5, like ?Av(24135)

25 years from now, how will the role of computers in our research be different?

1

10 years and 2 days ago…

