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| 1t is way too soon to teach our computers how to become full-fledged Aumans. It is even
- premature to teach them how to become mathematicians; it is even unwise, at present,
to teach them how to become combinatorialists. But the time is ripe to teach them how
' to become experts in a suitably defined and narrowly focused subarea of combinatorics. '
In this article, the author will describe his efforts in teaching his beloved computer,
- Shalosh B. Ekhad, how to be an enumerator of Wilf classes. ”
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~ With all due respect to Wilf classes and enumeration, and even to combinatorics,
the main point of this article is not to enhance our understanding of Wilf classes, but

- to illustrate how much (if not all) of mathematical research will be conducted in a few
- years. It goes as follows. Suppose a (as of now, human) mathematician has a bnlhant

- 1dea/ Teach that 1dea to a computer and let the computer ‘do research’ using that 1dea
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~ With all due respect to Wilf classes and enumeration, and even to combinatorics,
the main point of this article is not to enhance our understanding of Wilf classes, but

- to illustrate how much (if not all) of mathematical research will be conducted in a few
- years. It goes as follows. Suppose a (as of now, human) mathematician has a bnlhant

- 1dea/ Teach that 1dea to a computer and let the computer ‘do research’ using that 1dea

What’s the state of computation and experimentation in Permutation Patterns?
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Input: A basis for a permutation class.

Output: An “enumeration scheme” that describes how larger permutations in

the class can be recursively described in terms of smaller
permutations in the class.

A polynomial-time algorithm to compute the
number of permutations of length n.

Enumeration Scheme =——————p
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Define A(n) := Av,(123).
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Define A(n) := Av,(123).

Every non-empty permutation has a minimum entry somewhere.

=

Define A(n,1) :={x € An) : n(i) = 1}.
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Define A(n) := Av,(123).

Every non-empty permutation has a minimum entry somewhere.

=

Define A(n,1) :={x € An) : n(i) = 1}.

Obviously A(n) = | JA,(n, i) ‘e
l:1 *© o o o
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If n > 2,thenthe entry 2 is either to the left or to the right of 1.
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If n > 2,thenthe entry 2 is either to the left or to the right of 1.

Define A,(n,i,j) :={x € An) : (i) =1, n(j) =2, i < j}
and Ay (n,j,1) .= {r€An) : n(i)) =1, n(j) = 2,1 > j}
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If n > 2,thenthe entry 2 is either to the left or to the right of 1.

Define A,(n,i,j) :={x € An) : (i) =1, n(j) =2, i < j}
and Ay (n,j,1) .= {r€An) : n(i)) =1, n(j) = 2,1 > j}

1—1 n
Obviously A,(n,i) = [ | JAym.ji)[u] | | Apm.ij |
i=1 j=i+1

We could do this forever...
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and further based on the pattern formed by the bottom entries.
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> At each step it checks if any of the entries are “reversibly deletable”. If so,
this branch of the search tree doesn’t need to be split further.
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» The computer splits the whole set A(n) further E——
and further based on the pattern formed by the bottom entries.

> At each step it checks if any of the entries are “reversibly deletable”. If so,
this branch of the search tree doesn’t need to be split further.

> |f all branches finish, we get an enumeration scheme, which gives us a
polynomial-time algorithm to count the number of permutations of length

n, but does not give us the generating function.
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Experimental: when you “hit go”, you don’t know whether
or not it will return an answer

Ri(]OI’OUSZ if it does give an answer, it’s guaranteed to
be correct
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In 2007, Vince Vatter made the method more | -
powerful by increasing the number of situations in | Enumeration Schemes

which a point can be declared reversibly deletable. for Restricted Permutations
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Figure 5. The enumeration scheme for Av(1234).
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Z: When checking if a point is reversibly | FLEXIBLE SCHEMES AND BEYOND:
. - EXPERIMENTAL ENUMERATION OF PATTERN
deletable, can take into account whethera | AVOIDANCE CLASSES ~

gap between two entries must be empty. | By

can do only a few simple classes | YONAHBIBRSARIEL
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V: Can take into account when a gap is constrained to have a finite number of entries
(and more complicated similar constraints)
can do more classes



Enumeration Schemes — FIeX|bIe Schemes

Z: When checking if a point is reversibly | FLEXIBLE SCHEMES AND BEYOND:
. - EXPERIMENTAL ENUMERATION OF PATTERN
deletable, can take into account whethera | AVOIDANCE CLASSES

gap between two entries must be empty. | By

can do only a few simple classes . YONAHBIRRSARIEL

V: Can take into account when a gap is constrained to have a finite number of entries
(and more complicated similar constraints)
can do more classes

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could
be one entry deletable for some of these possibilities, and a different entry deletable
for the other possibilities.

can do even more classes
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. - EXPERIMENTAL ENUMERATION OF PATTERN
deletable, can take into account whethera | AVOIDANCE CLASSES ~

gap between two entries ust be gmpty. f By

YONAH BIERS-ARIEL ]

—- |

B-A: Sometimes if a gap is constrained to a finite number of possibilities, there could
be one entry deletable for some of these possibilities, and a different entry deletable
for the other possibilities.

can do even more classes
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Generating Trees

> A “generating tree” for a set of permutations is a way of rigorously
representing its structure. It describes where new maximum entries can be
inserted into permutations so that they remain in the set.

' 1234 4123 3124 4312 2134 4213 3214 4321

Figure 2. The first four levels of the pattern-avoidance tree T (132,231).

(Vatter 2007)
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> 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to
enumerate the Baxter permutations.
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Generating Trees

> 1978: Chung, Graham, Hoggatt Jr., and Kleiman invented generating trees to
enumerate the Baxter permutations.

»1995/1996: West uses generating trees to enumerate several permutation
classes.

» 2006: Vatter categorizes the permutation classes that have finitely labeled
generating trees and writes the Maple package FINLABEL to enumerate them
automatically.
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> 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, ...
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> 1998 — present: ECO Method

Exports the idea of generating trees to other combinatorial objects and uses
them to do many things: enumeration, generating functions, exhaustively
generating all objects in a fast way, ...
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> On Thursday: More algorithms for exhaustive generation!
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,’ MATHEMATICS OF COMPUTATION
- Volume 88, Number 318, July 2019, Pages 1967-1990

St ru Ct il:tf.si//dloi.torg/.lo.liOQO/nll)clc?m}/13386 . i
. rticie €elecironicCally pubplisned on ecembper 3
) AUTOMATIC DISCOVERY OF STRUCTURAL RULES
Most of the methods described so far: | OF PERMUTATION CLASSES

“ex pan da pa rticular structure tree and ’ CHRISTIAN BEAN, BJARKI GUDMUNDSSON, AND HENNING ULFARSSON

hope it ends up being finite”

Struct is a software package that takes a permutation class as input and
searches for a set cover that decomposes it into simpler disjoint parts.

- FIGURE 1. The structure of Av(231)
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, AUTOMATIC DISCOVERY OF STRUCTURAL RULES
Method: | OF PERMUTATION CLASSES

CHRISTIAN BEAN, BJARKI GUDMUNDSSON, AND HENNING ULFARSSON ~,

> Construct a big list of grids that make
subsets of the input class.

> Set up an integer linear programming problem to pick a subset of grids that
forms a set cover (each permutation in the class gives one constraint).

> Feed it into an ILP solver like Gurobi and wait patiently for a solution.
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Combinatorial Exploration

At the end of the Struct paper, the authors discuss some classes that Struct
can’t do along with a possible future approach.

“proof tree”

, FIGURE 5. The structure of C = Av(123) .



Combinatorial Exploration

| started talking with Henning Ulfarsson and Christian Bean at PP 2016.

6 years later...

, [Submitted on 15 Feb 2022 (v1), last revised 8 Aug 2022 (this version, v2)]

' Combinatorial Exploration: An algorithmic framework for enumeration

Michael H. Albert, Christian Bean, Anders Claesson, Emile Nadeau, Jay Pantone, Henning Ulfarsson

4

Combinatorial Exploration is a new domain-agnostic algorithmic framework to automatically and rigorously study the structure of combinatorial objects
and derive their counting sequences and generating functions. We describe how it works and provide an open-source Python implementation. As a
prerequisite, we build up a new theoretical foundation for combinatorial decomposition strategies and combinatorial specifications.

We then apply Combinatorial Exploration to the domain of permutation patterns, to great effect. We rederive hundreds of results in the literature in a
uniform manner and prove many new ones. These results can be found in a new public database, the Permutation Pattern Avoidance Library (PermPAL) at
this https URL. Finally, we give three additional proofs-of-concept, showing examples of how Combinatorial Exploration can prove results in the domains
of alternating sign matrices, polyominoes, and set partitions.

< - I
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being finite: produce a bunch of independent “rules” that relate a parent
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2. We need a much more efficient way to represent sets of permutations.



Combinatorial Exploration

Key insights:

1. Instead of expanding one particular structure tree and hoping it ends up
being finite: produce a bunch of independent “rules” that relate a parent
set to child sets, and hope that some subset of these rules can be

assembled into a tree

2. We need a much more efficient way to represent sets of permutations.

3. If (1) and (2) are done correctly, then the result can still be fully rigorous.
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Combinatorial Exploration

General outline:
> Teach the computer a set of strategies.

>~ Apply them to the set of permutations you want to enumerate.

and then to the children they produced
and then to the children they produced

and then to the children they produced

>~ Each time you apply a strategy to a set, you make a puzzle piece. Search the
pile of puzzle pieces for a subset that makes a combinatorial specification. If

vou find one, you win!
polynomial-time counting algorithm, system of equations for the GF,

uniform random sampling routine, exhaustive generation (but slow)
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Tilings
You have to represent infinite sets of permutations on your finite computer.

So with any computational method, you have to decide on a finite
representation for some sets of permutations.

One really good idea we had, after a whole lot of really bad ideas, is a

representation called a “Tiling”.

A tiling is a grid of cells that has “obstructions” that tell you patterns that can’t
appear, and “requirements” that tell you patterns that must appear.
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Tilings

The key innovation is that as you perform strategies on tilings, you can keep
track of exactly where bad patterns can be formed.

So unlike most other methods, you don’t have to constantly generate
permutations at every step to recompute this, which makes applying the
strategies very fast.
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Combinatorial Exploration

Av(1243, 1342, 2143)

The algorithm generates about
5,400 rules before it finds this
subset of 10 rules that makes a

i

rigorous specification.

R ma] ‘:
77 A || R T . 55 seconds
rE—T7 |

.’i Figure 24: A pictorial representation of the combinatorial specification found by Combinatorial
Exploration for Av(1243, 1342,2143).



Combinatorial Exploration

We can find combinatorial specifications for:

> 6 out of 7 of the classes avoiding 1 pattern of length 4
First direct enumerations of Av(1342) and Av(2413)

> All 56 classes avoiding 2 patterns of length 4

3 are conjectured to be non-D-finite
can derive the algebraic GF for the other 53

> All 317 classes avoiding 3 patterns of length 4

> All classes avoiding 4 or more patterns of length 4



Combinatorial Exploration

We can find combinatorial specifications for:

» 1324-avoiding domino permutations

» Preimage of Av(321) under West-stack-sorting
Av(34251,35241,45231)

» LCI| Schubert Varieties
Av(52341,53241,52431,35142,42513,351624)

> “Box classes” like Av(1[]J2[]3) and Av(1 [][]32)

» “POP classes”

> Permutations corresponding to Schubert varieties with a complete parabolic
bundle structure
Av(3412,52341,635241)



Combinatorial Exploration

h . rmpal.com

gg PermPAL Home  Examples Search  Random

The Permutation Pattern Avoidance Library (PermPAL)

PermPAL is a database of algorithmically-derived theorems about permutation classes.

The Combinatorial Exploration framework produces rigorously verified combinatorial specifications for families of
combinatorial objects. These specifications then lead to generating functions, counting sequence, polynomial-time
counting algorithms, random sampling procedures, and more.

This database contains 23,845 permutation classes for which specifications have been automatically found. This
includes many classes that have been previously enumerated by other means and many classes that have not been
previously enumerated.

Some Notables Successes:

* 6 out of 7 of the principal classes of length 4
» all 56 symmetry classes avoiding two patterns of length 4
» all 317 symmetry classes avoiding three patterns of length 4

which appears to be non-D-finite
all of the permutation classes counted by the Schroder numbers conjectured by Eric Egge

(see Defant)

Section 2.4 of the article Combinatorial Exploration: An Algorithmic Framework for Enumeration gives a more
comprehensive list of notable results.

The comb_spec_searcher github repository contains the open-source python framework for Combinatorial
Exploration, and the tilings github repository contains the code needed to apply it to the field of permutation patterns.
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Av(2143, 3412)

View Raw Data

Generating Function Counting Sequence
3z —1 1,1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964,
v—4z+1 (2z — 1) 18330728, ...
Copy to clipboard: { latex ] { Maple ] [ sympy ] [ Search on PermPAL Copy 101 terms to clipboard ] [ Search on OEIS ] [ Search on PermPAL
Recurrence Implicit Equation for the Generating Function €&
a(0) =1 (4z — 1)(2z — 1)*F(z)* + (3z — 1)° =0
a(l) =1
a(2) =2 .
C lipboard:
( . 3) 12 (1 n 2n)a(n) 2 (16 n 13n)a(n n 1) . (19 n 9n)a(n n 2) opy to clipboar [ latex ] [ Maple ] [ Search on PermPAL
a(n = —

n+3 n+3 n+3 ’
Heatmap

Copy to clipboard: [ latex ] [ Maple ]

To create this heatmap, we sampled 1,000,000 permutations of length 300
uniformly at random. The color of the point (%, j) represents how many
permutations have value 7 at index 2 (darker = more).
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View Raw Data

Generating Function Counting Sequence
3z —1 1,1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964,
v—4z+1 (2z — 1) 18330728, ...
Copy to clipboard: { latex ] { Maple ] [ sympy ] [ Search on PermPAL Copy 101 terms to clipboard ] [ Search on OEIS ] [ Search on PermPAL
Recurrence Implicit Equation for the Generating Function €&
a(0) =1 (4z — 1)(2z — 1)*F(z)* + (3z — 1)° =0
a(l) =1
a(2) =2 .
C lipboard:
( . 3) 12 (1 n 2n)a(n) 2 (16 n 13n)a(n n 1) . (19 n 9n)a(n n 2) opy to clipboar [ latex ] [ Maple ] [ Search on PermPAL
a(n = —

n+3 n+3 n+3 ’
Heatmap

Copy to clipboard: [ latex ] [ Maple ]

To create this heatmap, we sampled 1,000,000 permutations of length 300
uniformly at random. The color of the point (%, j) represents how many
permutations have value 7 at index 2 (darker = more).




1 4 \.L T A'll;)(l:\'lb) &l \.LU T .LO'"/}U;\'H; T .L) \.LU T U'lb)(l:\'lb T 4} \ J \ J \ J
a(n+3) = — +
( ) n+3 n+3 n+3 ’

Heatmap

Copy to clipboard: [ latex J [ Maple ]

To create this heatmap, we sampled 1,000,000 permutations of length 300
uniformly at random. The color of the point (%, j) represents how many
permutations have value 7 at index ¢ (darker = more).

Specification 1 Specification 2 Specification 3 Specification 4 Specification 5

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion

Isolated" and has 29 rules.
Found on April 21, 2021.
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Heatmap

Copy to clipboard: [ latex ] [ Maple ]

To create this heatmap, we sampled 1,000,000 permutations of length 300
uniformly at random. The color of the point (%, j) represents how many
permutations have value 7 at index 2 (darker = more).

Specification 1 Specification 2 Specification 3 Specification 4 Specification 5

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion

Isolated"” and has 29 rules.
Found on April 21, 2021.
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Specification 1 Specification 2 Specification 3 Specification 4 Specification 5

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion

Isolated” and has 29 rules.

Found on April 21, 2021.
Finding the specification took 653 seconds.

Proof Tree

Copy to clipboard: | specification json ] [ pack json ’

View tree on standalone page.
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This specification was found using the strategy pack "Row And Col Placements Tracked Fusion

Isolated" and has 29 rules.

Found on April 21, 2021.
Finding the specification took 653 seconds.

Proof Tree

Copy to clipboard: | specification json ] ‘ pack json ]

View tree on standalone page.
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System of Equations N\

Copy 29 equations to clipboard:‘ latex ] ’ Maple ] ‘ sympy ]

(z) + F(z)

(z)F5(z)
(z) + Fu(z)
(z)Fs(z)

“30'3121!31""31

&

28(3) + F3( ) + F7(:c)
( )Fs(w)

F:
Fg(w Yy Fl(](m y) + Flﬁ(w) + F26( )
Fio(z,y) = Fu(z,y) + Fis(z, y)

Fu(z,y) = Fi(z) + Fio(z,y) + Fis(z,y)
Fi5(z,y) = Fio(z,y) Fs5(x)
Fi3(x,y 1*_'11(3c y) Fi4(z, y)
F15(33 y) = F5(z) Fy(z,y)

Fig(z F17($)F5( )

F17( Flg(m 1)
Fig(z,y) = Fig(z,y) + Foulz,y) + Fi(z)
Fig(z,y on(a: y) + Fas(z,y)
Fy(z,y 1(z) + Foi(z,y) + Fao(z,y)

Fy(z,y 19(z, y) F5(x)

Fy(z,y F14(33 y) Fao(z, y)
Fy3(z,y) = Fis(z,y) F5(z)

Fou(z,y) = Fos(x, y) Fs5(x)

- —yFis(z,y) + Fis(x, 1)

Fos(z,y 1ty
Fy(z,y) = For(z, y) F5(x)

Fyr(z,y —ng(x,_yl): yF o1

Fgg( F17(:B)F5(£L')
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Combinatorial Exploration

Much of the theory we’ve developed is not specific to permutation patterns.

> rigorous definition of “combinatorial strategy” as a component of
combinatorial specifications

> algorithm to search giant set of rules for a subset that is a combinatorial
specification

> working with gridded versions of objects internally, represented by
obstructions and requirements

Combinatorial Exploration is domain-agnostic and can be used in other fields
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Lukas Nabergall

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Combinatorics and Optimization

-/ Figure 2.4: A visual representation of the proof tree for noncrossing diagrams D(«~<). |
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Figure 3.2: A proof tree for the class C(7%3, Bs3) of tree diagrams.
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Combinatorial Exploration

Set Partitions

Polyominoes

Ti(x) = 1 + (x + xH)T;(x) + x3diT1(x)
X
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Permutation Patterns: Easy or Hard?

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*
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- Apology. The success rate of the present method, in its present state, 1s somewhat
disappointing. Ekhad was able to reproduce the classical cases and a few new ones,
- but for most patterns and sets of patterns, it failed to find a scheme (defined below) of
reasonable depth. But the present framework for setting up a scheme could be modified

; and extended in various ways. We do believe that an appropriate enhancement of the
- present method would yield, if not a 100% success rate, at least close to it.



Permutation Patterns: Easy or Hard?

Enumeration Schemes and, More Importantly,
Their Automatic Generation

Doron Zeilberger*

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
zeilberg @math.temple.edu, http://www.math.temple.edu/ zeilberg

Received May 27, 1998

- Apology. The success rate of the present method, in its present state, 1s somewhat
disappointing. Ekhad was able to reproduce the classical cases and a few new ones,

- but for most patterns and sets of patterns, it failed to find a scheme (defined below) of
' reasonable depth. But the present framework for setting up a scheme could be modified

; and extended In various ways..\We-do-believe that.an.appropriate.enhan. gment of the

7 present method would yleld 1f not a 100% success rate at ]east close to 1t '

A bit optimistic!
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Permutation Patterns: Easy or Hard?

Garrabrant and Pak proved that there are classes with a finite basis for which
there exists no polynomial-time counting algorithm!

Does a polynomial-time algorithm exist for Av(1324)?

What about the classes that avoid a single pattern of length 5, like Av(24135)7

25 years from now, how will the role of computers in our research be different?
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10 years and 2 days aqgo...

ENUMERATION OF AV(3124,4312)
PERMUTATION PATTERNS 2013

Jay Pantone
University of Florida




