Equidistribution of Destop on pattern-avoiding permutation classes

Alexander Burstein
Howard University
aburstein@howard.edu

Permutation Patterns 2023
July 3-7, 2023

Descents, descent tops, descent bottoms

Permutation $\pi \in S_{n}$

$$
\pi=\ldots a_{i} a_{i+1} \ldots, \quad a_{i}>a_{i+1}
$$

Then

- i is a descent (position) of π,
- a_{i} is descent top of π,
- a_{i+1} is a descent bottom of π.

Define

- Des $\pi=$ set of descents of π,
- Destop $\pi=$ set of descent tops of π,
- Desbot $\pi=$ set of descent bottoms of π.

Similar notation for ascents $\left(a_{i}<a_{i+1}\right)$: Asc, Ascbot, Asctop

Descents, descent tops, descent bottoms

Permutation $\pi \in S_{n}$

$$
\pi=\ldots a_{i} a_{i+1} \ldots, \quad a_{i}>a_{i+1}
$$

Then

- i is a descent (position) of π,
- a_{i} is descent top of π,
- a_{i+1} is a descent bottom of π.

Define

- Des $\pi=$ set of descents of π,
- Destop $\pi=$ set of descent tops of π,
- Desbot $\pi=$ set of descent bottoms of π.

Similar notation for ascents $\left(a_{i}<a_{i+1}\right)$: Asc, Ascbot, Asctop

Descents, descent tops, descent bottoms

Permutation $\pi \in S_{n}$

$$
\pi=\ldots a_{i} a_{i+1} \ldots, \quad a_{i}>a_{i+1}
$$

Then

- i is a descent (position) of π,
- a_{i} is descent top of π,
- a_{i+1} is a descent bottom of π.

Define

- Des $\pi=$ set of descents of π,
- Destop $\pi=$ set of descent tops of π,
- Desbot $\pi=$ set of descent bottoms of π.

Descents, descent tops, descent bottoms

Permutation $\pi \in S_{n}$

$$
\pi=\ldots a_{i} a_{i+1} \ldots, \quad a_{i}>a_{i+1}
$$

Then

- i is a descent (position) of π,
- a_{i} is descent top of π,
- a_{i+1} is a descent bottom of π.

Define

- Des $\pi=$ set of descents of π,
- Destop $\pi=$ set of descent tops of π,
- Desbot $\pi=$ set of descent bottoms of π.

Similar notation for ascents $\left(a_{i}<a_{i+1}\right)$: Asc, Ascbot, Asctop

f-Wilf-equivalence

Let f be a permutation statistic. We say that patterns σ and τ are f-Wilf-equivalent if there a bijection Θ between $A v_{n}(\sigma)$ and $A v_{n}(\tau)$ (avoiders of σ and avoiders of τ) that preserves the f statistic, i.e.

$$
f=f \circ \Theta
$$

Conjectures

Conjecture

The non-singleton Destop-Wilf-equivalence classes in S_{4} are:

- 1243 ~ 3412,
- 1423 ~ 2413,
- 2143 ~3421,
- 2314 ~3124,
- 2431 ~ 3142 ~ 3241 ~ 4132 .

Checked: Holds for avoiders of size $\leqslant 10$.

Stronger Conjectures I

Observe: $\{3142,3241,4132\}$ is preserved under reversal of complement.

Conjecture

3142 ~ 3241 ~ 4132 are (Destop, Desbot)-Wilf equivalent.

Stronger Conjectures I

Observe: $\{3142,3241,4132\}$ is preserved under reversal of complement.

Conjecture
3142 ~ 3241 ~ 4132 are (Destop, Desbot)-Wilf equivalent.

Stronger Conjectures II

Observe: 2314 and 3124 end with the largest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Destop-shape-Wilf equivalent for any permutation σ.

Conjecture
231 ~ 312 are (Destop, Desbot)-shape-Wilf equivalent.

Observe: 2431 and 3241 end with the smallest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Ascbot-shape-Wilf equivalent for any
nonempty permutation σ.

Stronger Conjectures II

Observe: 2314 and 3124 end with the largest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Destop-shape-Wilf equivalent for any permutation σ.

Conjecture
231 ~ 312 are (Destop, Desbot)-shape-Wilf equivalent.
Observe: 2431 and 3241 end with the smallest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Ascbot-shape-Wilf equivalent for any
nonempty permutation σ.

Stronger Conjectures II

Observe: 2314 and 3124 end with the largest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Destop-shape-Wilf equivalent for any permutation σ.

Conjecture
231 ~ 312 are (Destop, Desbot)-shape-Wilf equivalent.
Observe: 2431 and 3241 end with the smallest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Ascbot-shape-Wilf equivalent for any nonempty permutation σ.

Stronger Conjectures II

Observe: 2314 and 3124 end with the largest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Destop-shape-Wilf equivalent for any permutation σ.

Conjecture
231 ~ 312 are (Destop, Desbot)-shape-Wilf equivalent.
Observe: 2431 and 3241 end with the smallest letter.
Conjecture
$231 \oplus \sigma \sim 312 \oplus \sigma$ are Ascbot-shape-Wilf equivalent for any nonempty permutation σ.

Motivation

- 132 ~ 231 and 132 ~ 312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns. So, we can only preserve Des or Destop, but not both

Motivation

- 132 ~ 231 and 132 ~ 312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132~231 and 132~312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132~231 and 132~312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.

Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$

- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132~231 and 132~312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132 ~ 231 and 132 ~ 312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- B., Jones, '16: 2143 ~ 3421 on \mathfrak{D}^{1},
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132 ~ 231 and 132 ~ 312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- B., Jones, '16: 2143 ~ 3421 on \mathfrak{D}^{1},
- Archer, Lauderdale, '19: the rest on \mathfrak{D}^{1}.
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns.

Motivation

- 132 ~ 231 and 132 ~ 312 are Des- and Destop-Wilf-equivalent.
- 231 ~ 312 are Des- and (Destop, Desbot)-Wilf equivalent.
- Stankova, West, '02: 231 ~ 312 are shape-Wilf-equivalent.
- Bloom, '14: 1423 ~ 2413 are Des-Wilf-equivalent.
- Conjectures for Wilf-equivalence of the same patterns on Dumont permutations of the first kind, i.e. permutations with Destop $=\{$ all even entries $\}$:
- B., Jones, '16: 2143 ~ 3421 on \mathfrak{D}^{1},
- Archer, Lauderdale, '19: the rest on \mathfrak{D}^{1}.
- (Des, Destop) is not jointly equidistributed for any pair of S_{4} (or S_{3}) patterns. So, we can only preserve Des or Destop, but not both.

References

J. Bloom, A refinement of Wilf-equivalence for patterns of length 4, J. Combin. Theory, Ser. A 124 (2014), 166-177.
O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
Z. Stankova, J. West, A New class of Wilf-Equivalent Permutations, J. Alg. Combin. 15(3), (2002), 271-290.

