Descent distribution on Catalan words avoiding ordered pairs of Relations

José L. Ramírez Departamento de Matemáticas Universidad Nacional de Colombia

Joint work: Jean-Luc Baril

Permutation Patterns 2023 Dijon, France

What is a Catalan word?

Exercise 80:

Definition A Catalan word $w = w_1 w_2 \cdots w_n$ is one over the set of non-negative integers satisfying $w_1 = 0$ and $0 \le w_i \le w_{i-1} + 1$ for $i = 2, \ldots, n$.

$0 \ 1 \ 2 \ 1 \ 2 \ 2 \ 0 \ 1 \ 2 \ 3 \ 4$

• C_n := set of Catalan words of length n, and $C = \bigcup_{n \ge 0} C_n$.

 $m{C}_4 = \{ 0000, \ 0001, \ 0010, \ 0100, \ 0011, \ 0101, \ 0110, \ 0111, \ 0102, \ 0112, \ 0120, \ 0121, \ 0122, \ 0123 \}.$

• The set C_n is enumerated by the Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Bijection with Dyck paths:

Catalan word (length 14):

01100012322310

- Toufik Mansour and Vincent Vajnovszki (2013): Catalan words were studied in the context of exhaustive generation of Gray codes for growth-restricted words.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki (2018) study the distribution of descents on restricted Catalan words avoiding a pattern of length at most three.
- Diana Toquica, Toufik Mansour and JLR (2021) study several combinatorial statistics on the polyominoes associated the Catalan words.

Catalan words avoiding ordered pairs of relations

Motivated by...

Megan Martinez and Carla Savage (2018) carried out the systematic study of inversion sequences avoiding triples of relations.

... for a fixed triple of binary relations (ρ_1, ρ_2, ρ_3) , we study the set $I_n(\rho_1, \rho_2, \rho_3)$ consisting of those $e \in I_n$ with no i < j < k such that $e_i \rho_1 e_j, e_j \rho_2 e_k$, and $e_i \rho_3 e_k$...

$$\rho_i \in \{<,>,\leq,\geq,=,\neq,-\}$$

- Juan Auli and Sergi Elizalde (2019). Consecutive patterns in inversion sequences avoiding patterns of relations.
- Arissap Sapounakis, Ioannis Tasoulas, Panagiotis Tsikouras (2007). Counting strings in Dyck paths.

We consider pattern p as an ordered pair p=(X,Y) of relations X and Y lying into the set $\{<,>,\leq,\geq,=,\neq\}.$

We consider pattern p as an ordered pair p = (X, Y) of relations X and Y lying into the set $\{<, >, \leq, \geq, =, \neq\}$. We will say that a Catalan word w contains the pattern p = (X, Y) if there exists $i \geq 1$ such that $w_i X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.

Example

Example

Example

Example

Example

- 1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.
- 2. The avoidance of (\neq, \geq) on Catalan words is **equivalent** to the avoidance of the four consecutive patterns:

$$\begin{array}{ll} \underline{010} & (0 \neq 1 > 0) \\ \underline{011} & (0 \neq 1 = 1) \\ \underline{100} & (1 > 0 = 0) \\ \underline{210} & (2 \neq 1 > 0) \end{array}$$

Example

- 1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.
- 2. The avoidance of (\neq, \geq) on Catalan words is **equivalent** to the avoidance of the four consecutive patterns:

$$\begin{array}{ll} \underline{010} & (0 \neq 1 > 0) \\ \underline{011} & (0 \neq 1 = 1) \\ \underline{100} & (1 > 0 = 0) \\ \underline{210} & (2 \neq 1 > 0) \end{array}$$

3. The avoidance of (<, <) is equivalent to <u>012</u>.

We introduce the bivariate generating function

$$\label{eq:constraint} \begin{split} \mathbf{C}_p(x,y) := \sum_{w \in \mathcal{C}(p)} x^{|w|} y^{\mathsf{des}(w)} = \sum_{n,k \geq 0} \mathbf{c}_p(n,k) x^n y^k \end{split}$$

We introduce the bivariate generating function

c_p(n, k):= number of Catalan words of length n such that des(w) = k.

$$C_p(x) := \sum_{w \in \mathcal{C}(p)} x^{|w|} = C_p(x, 1).$$
$$D_p(x) := \left. \frac{\partial C_p(x, y)}{\partial y} \right|_{y=1}.$$

We provide systematically the bivariate generating function for the number of Catalan words avoiding a given pair of relations with respect to the length and the number of descents.

 $\blacktriangleright \ \mathcal{C}(=,<) = \mathcal{C}(\underline{001})$

C(=, <) = C(<u>001</u>)
 C(<, =) = C(<u>011</u>)

• $C(=, <) = C(\underline{001})$ • $C(<, =) = C(\underline{011})$ • $C(<, >) = C(\underline{010}, \underline{120}).$

• $C(=, <) = C(\underline{001})$ • $C(<, =) = C(\underline{011})$ • $C(<, >) = C(\underline{010}, \underline{120}).$

- $\blacktriangleright \ \mathcal{C}(=,<) = \mathcal{C}(\underline{001})$
- $\blacktriangleright \ \mathcal{C}(<,=) = \mathcal{C}(\underline{011})$
- $\blacktriangleright \ \mathcal{C}(<,>) = \mathcal{C}(\underline{010},\underline{120}).$

There exists a bijection between the Catalan words avoiding $\underline{011}$ and those avoiding $\underline{001}$ preserving the number of descents.

 $\blacktriangleright \ \mathcal{C}(=,<) = \mathcal{C}(\underline{001})$

$$\blacktriangleright \ \mathcal{C}(<,=) = \mathcal{C}(\underline{011})$$

 $\blacktriangleright \ \mathcal{C}(<,>) = \mathcal{C}(\underline{010},\underline{120}).$

There exists a bijection between the Catalan words avoiding <u>011</u> and those avoiding <u>001</u> preserving the number of descents. Bijection (sketch) Replacing, from left to right, each factor $k^{j}(k+1)$ with the factor $k(k+1)^{j}$ $(j \ge 2)$.

 $\blacktriangleright \ \mathcal{C}(=,<) = \mathcal{C}(\underline{001})$

$$\blacktriangleright \ \mathcal{C}(<,=) = \mathcal{C}(\underline{011})$$

 $\blacktriangleright \ \mathcal{C}(<,>) = \mathcal{C}(\underline{010},\underline{120}).$

There exists a bijection between the Catalan words avoiding <u>011</u> and those avoiding <u>001</u> preserving the number of descents. Bijection (sketch) Replacing, from left to right, each factor $k^{j}(k+1)$ with the factor $k(k+1)^{j}$ $(j \ge 2)$.

$$C_{(=,<)}(x,y) = C_{(<,=)}(x,y)$$

$$C_{(<,>)}(x) = C_{(=,<)}(x) = C_{(<,=)}(x)$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let w = 0(w'+1)w'' be the **first return decomposition**, where $w', w'' \in \mathcal{C}(\underline{001})$.

$${\pmb C}_{(<,>)}(x) = {\pmb C}_{(=,<)}(x) = {\pmb C}_{(<,=)}(x)$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let w = 0(w'+1)w'' be the **first return decomposition**, where $w', w'' \in \mathcal{C}(\underline{001})$. As an example, the first return decomposition of w = 0122123011201 is given by setting w' = 011012 and w'' = 011201. That is w = 0(122123)(011201)

$$C_{(<,>)}(x) = C_{(=,<)}(x) = C_{(<,=)}(x)$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let w = 0(w'+1)w'' be the **first return decomposition**, where $w', w'' \in \mathcal{C}(\underline{001})$.

- 1. 0α with $\alpha \in \mathcal{C}(<,>)$,
- 2. $0(\alpha + 1)$ with $\alpha \in \mathcal{C}(<,>)$, $\alpha \neq \epsilon$, or
- 3. $0(\alpha+1)\beta$ where α ends with a(a+1) and $\beta \in \mathcal{C}(<,>)$, $\beta \neq \epsilon$

$$C_{(<,>)}(x) = C_{(=,<)}(x) = C_{(<,=)}(x)$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let w = 0(w' + 1)w'' be the **first return decomposition**, where $w', w'' \in \mathcal{C}(\underline{001})$.

- 1. 0α with $\alpha \in \mathcal{C}(<,>)$,
- 2. $0(\alpha + 1)$ with $\alpha \in \mathcal{C}(<,>)$, $\alpha \neq \epsilon$, or

3. $0(\alpha + 1)\beta$ where α ends with a(a+1) and $\beta \in C(<,>)$, $\beta \neq \epsilon$ Generating Functions:

1.
$$xC_{(<,>)}(x)$$

2. $x(C_{(<,>)}(x) - 1)$
3. $x(C_{(<,>)}(x) - 1)(C_{(<,>)}(x) - 1 - x - x(C_{(<,>)}(x) - 1))$

$${\pmb C}_{(<,>)}(x) = {\pmb C}_{(=,<)}(x) = {\pmb C}_{(<,=)}(x)$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let w = 0(w'+1)w'' be the **first return decomposition**, where $w', w'' \in \mathcal{C}(\underline{001})$.

- 1. 0α with $\alpha \in \mathcal{C}(<,>)$,
- 2. $0(\alpha + 1)$ with $\alpha \in \mathcal{C}(<,>)$, $\alpha \neq \epsilon$, or
- 3. $0(\alpha+1)\beta$ where α ends with a(a+1) and $\beta \in \mathcal{C}(<,>)$, $\beta \neq \epsilon$

$$C_{(<,>)}(x) = 1 + xC_{(<,>)}(x) + x(C_{(<,>)}(x) - 1) + x(C_{(<,>)}(x) - 1)(C_{(<,>)}(x) - 1 - x - x(C_{(<,>)}(x) - 1)),$$

The sets C(=,<) and $C(<,>) = C(\underline{010},\underline{120})$ are in one-to-one correspondence, but the number of descents cannot be preserved.

 $\mathcal{C}_4(<,>) = \{0000,0001,0011,0012,0110,0111,0112,0122,0123\}.$

 $\mathcal{C}_4(=,<) = \{0000, 0100, 0101, 0110, 0111, 0120, 0121, 0122, 0123\}.$

Example: Cases (=, <), (<, =), and (<, >)

Theorem The g.f. $C_{(=,<)}(x,y)$ and $C_{(<,=)}(x,y)$ are given by

$$\frac{(1-x+2xy)(1-x)-\sqrt{(1-x)^4-(1-x)4x^2y}}{2xy(1-x)}$$

Theorem *We have*

$$C_{(<,>)}(x,y) = \frac{1 - 2x + 2xy - x^2y - \sqrt{1 - 4x + 4x^2 - 2x^2y + x^4y^2}}{2xy(1-x)}$$

Corollary

$$\boldsymbol{c}_{(<,>)}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}, \ n \ge 1.$$

-

Corollary

$$\boldsymbol{c}_{(<,>)}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}, \ n \ge 1.$$

Catalan words and Dyck path:

 c_(<,=)(n):= counts the Dyck paths of semilength n avoiding UUDU. Corollary

$$\boldsymbol{c}_{(<,>)}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}, \ n \ge 1.$$

Catalan words and Dyck path:

- c_(<,=)(n):= counts the Dyck paths of semilength n avoiding UUDU.
- c_(=,<)(n):= counts the Dyck paths of semilength n avoiding UDUU.

Corollary

$$c_{(<,>)}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}, \ n \ge 1.$$

Catalan words and Dyck path:

- c_(<,=)(n):= counts the Dyck paths of semilength n avoiding UUDU.
- c_(=,<)(n):= counts the Dyck paths of semilength n avoiding UDUU.
- But, not all the cases have an *easy* interpretation in terms of Dyck paths.

Corollary

The g.f. for the total number of descents on $\mathcal{C}(<,>)$ is

$$\boldsymbol{D}_{(<,>)}(x) = \frac{1 - 4x + 3x^2 - (1 - 2x)\sqrt{1 - 4x + 2x^2 + x^4}}{2(1 - x)x\sqrt{1 - 4x + 2x^2 + x^4}}$$

The series expansion of $\boldsymbol{D}_{(<,>)}(x)$ is

$$x^{4} + 6x^{5} + 26x^{6} + 100x^{7} + 363x^{8} + 1277x^{9} + O(x^{10})$$

where the coefficient sequence does not appear in OEIS.

Constante cases:

(X,Y)	Cardinality of $\mathcal{C}_n(X,Y)$, $n \ge 1$	OEIS
(=,=)	$\boldsymbol{c}_{\underline{000}}(n) = \sum_{k=1}^{n} {k \choose n-k} m_{k-1}$	<u>A247333</u>
$(=,\geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	<u>A102407</u>
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
(=,>)	$C_{\underline{110}}(x) = \frac{1-2x^2 - \sqrt{1-4x+4x^3}}{2x(1-x)}$ $C_{\underline{100}}(x) = \frac{1-2x^2 - \sqrt{1-4x+4x^3}}{2x(1-x)}$	<u>A087626</u>
(>,=)	$C_{\underline{100}}(x) = \frac{1 - 2x^2 - \sqrt{1 - 4x + 4x^3}}{2x(1 - x)}$	<u>A087626</u>
$(=,\leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
(=,<)	$c_{\underline{001}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{(n-k)}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,=)	$\boldsymbol{c}_{\underline{011}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,>)	$\sum_{k=0}^{\lfloor (n-1)/2 floor} rac{(-1)^k}{n-k} {n-k \choose k} {2n-3k \choose n-2k-1}$	<u>A105633</u>
$(=,\neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	<u>A086615</u>
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	A086615
(\geq,\geq)	m_n (Motzkin numbers)	<u>A001006</u>
(<,<)	m_n (Motzkin numbers)	A001006

(\mathbf{V}, \mathbf{V})	Cardinality of $\mathcal{C}_{n}(x)$. Dyck paths avoid	ding UDUDU
(X,Y)		
(=,=)	$c_{\underline{000}}(n) = \sum_{k=1}^{n} {k \choose n-k} m_{k-1}$	A247333
$(=,\geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	<u>A102407</u>
(=,>)	$C_{\underline{110}}(x) = \frac{1 - 2x^2 - \sqrt{1 - 4x + 4x^3}}{2x(1 - x)}$	<u>A087626</u>
(>,=)	$C_{\underline{100}}(x) = \frac{1 - 2x^2 - \sqrt{1 - 4x + 4x^3}}{2x(1 - x)}$	<u>A087626</u>
$(=,\leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
(=,<)	$c_{\underline{001}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,=)	$c_{\underline{011}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,>)	$\sum_{k=0}^{\lfloor (n-1)/2 floor} rac{(-1)^k}{n-k} {n-k \choose k} {2n-3k \choose n-2k-1}$	<u>A105633</u>
$(=,\neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	<u>A086615</u>
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	A086615
(\geq,\geq)	m_n (Motzkin numbers)	<u>A001006</u>
(<,<)	m_n (Motzkin numbers)	<u>A001006</u>

(X,Y)	Cardinality of $\mathcal{C}_n(X,Y)$, $n \ge 1$	OEIS
(=,=)	$c_{\underline{000}}(n) = \sum_{k=1}^{n} {k \choose n-k} m_{k-1}$	<u>A247333</u>
$(=,\geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1000, 1000	
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1000 1, 2, 4, 10, 26, 72, 206, 606, 1100 1, 2, 4, 10, 26, 72, 206, 606, 1100 1, 2, 4, 10, 26, 72, 206, 606	atorial interpre
(=,>)	$C_{\underline{110}}(x) = \frac{1-2x^2 - \sqrt{1-4x+4x^3}}{2x(1-x)}$	A087626
(>,=)	$C_{\underline{100}}(x) = \frac{1 - 2x^2 - \sqrt{1 - 4x + 4x^3}}{2x(1 - x)}$	<u>A087626</u>
$(=,\leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
(=,<)	$c_{\underline{001}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,=)	$c_{\underline{011}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,>)	$\sum_{k=0}^{\lfloor (n-1)/2 floor} rac{(-1)^k}{n-k} {n-k \choose k} {2n-3k \choose n-2k-1}$	<u>A105633</u>
$(=,\neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	<u>A086615</u>
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	<u>A086615</u>
(\geq,\geq)	m_n (Motzkin numbers)	A001006
(<,<)	m_n (Motzkin numbers)	A001006

-

(X,Y)	Cardinality of $\mathcal{C}_n(X,Y)$, $n \ge 1$	OEIS
(=,=)	$c_{000}(n) = \sum_{k=1}^{n} {k \choose n-k} m_{k-1}$	<u>A247333</u>
$(=,\geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
(=,>)	$C_{110}(x) = \frac{1 - 2x^2 - \sqrt{1 - 4x + 4x^3}}{x + 4x^3}$	1097626
(>,=)	Motzkin path with 2 kinds of $2x(1-x)$	level steps
$(=,\leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	A143013
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	<u>A143013</u>
(=,<)	$c_{\underline{001}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^k}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,=)	$c_{\underline{011}}(n) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^{k}}{n-k} \binom{n-k}{k} \binom{2n-3k}{n-2k-1}$	<u>A105633</u>
(<,>)	$\sum_{k=0}^{\lfloor (n-1)/2 floor} rac{(-1)^k}{n-k} {n-k \choose k} {2n-3k \choose n-2k-1}$	<u>A105633</u>
$(=,\neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	<u>A086615</u>
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	A086615
(\geq,\geq)	m_n (Motzkin numbers)	<u>A001006</u>
(<,<)	m_n (Motzkin numbers)	A001006

(X,Y)	Cardinality of $\mathcal{C}_n(X,Y)$, $n \ge 1$	OEIS	
$\boxed{(\geq,>)}$	1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905,	A082582	
$(>,\geq)$	1, 2, 5, 13, 35, 97, 275, 794, 2327 Fibonacci r	umbers	
(>,<)	1, 2, 5, 13, 35, 97, 275, 794, 2327, 0505,	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	
(\geq,\leq)	F_{n+1} (Fibonacci number)	A000045	
$\boxed{(\leq,<)}$	F_{n+1} (Fibonacci number)	<u>A000045</u>	
$(<,\leq)$	F_{n+1} (Fibonacci number)	<u>A000045</u>	
$(\geq,<)$	2^{n-1}	<u>A011782</u>	
$(\leq, >)$	2^{n-1}	A011782	
(\geq, \neq)	$\binom{n}{2} + 1$	<u> </u>	
(>,>)	$c_{\underline{210}}(n) = \sum_{k=0}^{\lfloor n/2 floor} \frac{1}{n-k} {n-k \choose k} {n-k \choose k+1} 2^{n-k}$	1bers	
$(>,\leq)$	P_{n+1}	A000129	

	1, 2, 5, 13, 34, 90, 242, 660, 1821, 5073,	New
(<, ≥`N	n n	<u>A000027</u>
(\neq,\geq)	n	<u>A000027</u>
$(<,\neq)$	1, 2, 3, 6, 12, 25, 54, 119, 267, 608,	
$[(\neq, >)$	1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869,	<u>A152225</u>
$(\neq, <)$	1, 2, 4, 8, 17, 37, 82, 185, 423, 978,	<u>A292460</u>
(\neq,\neq)	1, 2, 3, 6, 11, 22, 43, 87, 176, 362,	<u>A026418</u>

Further Driections

- Let c_p(n, k) denote the number of Catalan words (avoiding the consecutive pattern p) of length n, whose last symbol is equal to k.
- Let \mathcal{T}_p be the infinite matrix $\mathcal{T}_p := (c_p(n,k))_{n \ge 1, k \ge 0}$.

Example

The first few rows of the matrix $\mathcal{T}_{\underline{010}}$ are

	/ 1	0	0	0	0	0	0	0	0 \
	1	1	0	0	0	0	0	0	0
	1	2	1	0	0	0	0	0	0
	3	3	3	1	0	0	0	0	0
$\mathcal{T}_{\underline{010}} =$	9	8	6	4	1	0	0	0	0
	25	25	16	10	5	1	0	0	0
	73	74	51	28	15	6	1	0	0
	223	223	159	91	45	21	$\overline{7}$	1	0
	697	696	496	296	150	68	28	8	1 /

Riordan Arrays

Definition

A Riordan array is an infinite lower triangular matrix whose k-th column has generating function $g(x)f(x)^k$ for all $k \ge 0$, for some formal power series g(x) and f(x) with $g(0) \ne 0$, f(0) = 0, and $f'(0) \ne 0$. Such a Riordan array is denoted by (g(x), f(x)).

$$(g(x), f(x)) =: \begin{pmatrix} l_{00} & & & \\ l_{10} & l_{11} & & \\ l_{20} & l_{21} & l_{22} & \\ l_{30} & l_{31} & l_{32} & l_{33} \\ \vdots & \vdots & \vdots & \vdots \\ g(x) & g(x)f(x) & g(x)f^2(x) & g(x)f^3(x) \end{pmatrix}$$

The product of two Riordan arrays $(g(\boldsymbol{x}),f(\boldsymbol{x}))$ and $(h(\boldsymbol{x}),l(\boldsymbol{x}))$ is defined by

$$(g(x), f(x)) * (h(x), l(x)) = (g(x)h(f(x)), l(f(x))).$$
(1)

Under this operation, the set of all Riordan arrays is a group.

The product of two Riordan arrays (g(x), f(x)) and (h(x), l(x)) is defined by

$$(g(x), f(x)) * (h(x), l(x)) = (g(x)h(f(x)), l(f(x))).$$
(1)

Under this operation, the set of all Riordan arrays is a group.

Theorem

The matrix $\mathcal{T}_{\underline{010}}$ is a Riordan array given by

If C_n denotes the *n*-th Catalan number, then for $n \ge 2$ and $k \ge 0$,

$$c_{\underline{010}}(n,k) = \sum_{\ell=0}^{n-1} c_{\underline{010}}(n-1,k-1-\ell) a_{\ell}$$

where

$$\begin{split} a_n &:= 1 + \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^{i+1} \binom{n-i-1}{i} \overline{C}_{n-i-1} \quad \text{and} \\ \overline{C}_n &:= \begin{cases} C_{\frac{n-1}{2}}, & \text{if } n \text{ is odd}; \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

For $p \in \{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_p are Riordan arrays.

For $p \in \{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_p are Riordan arrays.

The matrix related to the pattern $\underline{012}$ can not be a Riordan array.

For $p \in \{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_p are Riordan arrays.

The matrix related to the pattern <u>012</u> can not be a Riordan array. **Problem:** What is the combinatorial interpretation of the inverse matrix? For example, the absolute value of the second and third columns of the inverse matrix $(\mathcal{M}_{\underline{010}}^{f(x)=1})^{-1}$ are the sequences <u>A104545</u> (number of Motzkin paths of length *n* having no consecutive (1,0) steps) and <u>A256169</u>, respectively.

(1	0	0	0	0	0	0	0 \
0	1	0	0	0	0	0	0
0	-1	1	0	0	0	0	0
0	1	-2	1	0	0	0	0
0	-3	3	-3	1	0	0	0
0	5	-8	6	-4	1	0	0
0	-11	17	-16	10	-5	1	0
0	25	-38	39	-28	15	-6	1 /

Thank you!