Descent distribution on Catalan words avoiding ordered pairs of Relations

José L. Ramírez
Departamento de Matemáticas
Universidad Nacional de Colombia

Joint work: Jean-Luc Baril
Permutation Patterns 2023
Dijon, France

What is a Catalan word?

Catalan

Numbers
RICHARD P. STANLEY

Exercise 80:

Definition
A Catalan word $w=w_{1} w_{2} \cdots w_{n}$ is one over the set of non-negative integers satisfying $w_{1}=0$ and $0 \leq w_{i} \leq w_{i-1}+1$ for $i=2, \ldots, n$.

$$
01214220012234
$$

- $\boldsymbol{C}_{n}:=$ set of Catalan words of length n, and $\boldsymbol{C}=\bigcup_{n \geq 0} \boldsymbol{C}_{n}$.

$$
\begin{aligned}
C_{4}= & \{0000,0001,0010,0100,0011,0101,0110, \\
& 0111,0012,0112,0120,0121,0122,0123\}
\end{aligned}
$$

- The set \boldsymbol{C}_{n} is enumerated by the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Bijection with Dyck paths:

Catalan word (length 14):
01100012322310

- Toufik Mansour and Vincent Vajnovszki (2013): Catalan words were studied in the context of exhaustive generation of Gray codes for growth-restricted words.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki (2018) study the distribution of descents on restricted Catalan words avoiding a pattern of length at most three.
- Diana Toquica, Toufik Mansour and JLR (2021) study several combinatorial statistics on the polyominoes associated the Catalan words.

Catalan words avoiding ordered pairs of relations

Motivated by...

- Megan Martinez and Carla Savage (2018) carried out the systematic study of inversion sequences avoiding triples of relations.
... for a fixed triple of binary relations $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$, we study the set $I_{n}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ consisting of those $e \in I_{n}$ with no $i<j<k$ such that $e_{i} \rho_{1} e_{j}, e_{j} \rho_{2} e_{k}$, and $e_{i} \rho_{3} e_{k} \ldots$

$$
\rho_{i} \in\{<,>, \leq, \geq,=, \neq,-\}
$$

- Juan Auli and Sergi Elizalde (2019). Consecutive patterns in inversion sequences avoiding patterns of relations.
- Arissap Sapounakis, Ioannis Tasoulas, Panagiotis Tsikouras (2007). Counting strings in Dyck paths.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311 .

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.
2. The avoidance of (\neq, \geq) on Catalan words is equivalent to the avoidance of the four consecutive patterns:

$$
\begin{array}{ll}
\underline{010} & (0 \neq 1>0) \\
\underline{011} & (0 \neq 1=1) \\
\underline{100} & (1>0=0) \\
\underline{210} & (2 \neq 1>0)
\end{array}
$$

We consider pattern p as an ordered pair $p=(X, Y)$ of relations
X and Y lying into the set $\{<,>, \leq, \geq,=, \neq\}$.
We will say that a Catalan word w contains the pattern $p=(X, Y)$
if there exists $i \geq 1$ such that $w_{i} X w_{i+1}$ and $w_{i+1} Y w_{i+2}$.
We say that w avoids the consecutive pattern p whenever w does not contain the consecutive pattern p.

Example

1. The pattern (\neq, \geq) appears twice in the Catalan word 0123112 on the triplets 231 and 311.
2. The avoidance of (\neq, \geq) on Catalan words is equivalent to the avoidance of the four consecutive patterns:

$$
\begin{array}{ll}
\underline{010} & (0 \neq 1>0) \\
\underline{011} & (0 \neq 1=1) \\
\underline{100} & (1>0=0) \\
\underline{\underline{210}} & (2 \neq 1>0)
\end{array}
$$

3. The avoidance of $(<,<)$ is equivalent to $\underline{012}$.

We introduce the bivariate generating function

$$
\boldsymbol{C}_{p}(x, y):=\sum_{w \in \mathcal{C}(p)} x^{|w|} y^{\operatorname{des}(w)}=\sum_{n, k \geq 0} \boldsymbol{c}_{p}(n, k) x^{n} y^{k}
$$

We introduce the bivariate generating function

$$
\boldsymbol{C}_{p}(x, y):=\sum_{w \in \mathcal{C}(p)} x^{|w|} y^{\operatorname{des}(w)}=\sum_{n, k \geq 0} \boldsymbol{c}_{p}(n, k) x^{n} y^{k}
$$

Catalan words avoiding the consecutive pattern p

the number of descents in w

- $\boldsymbol{c}_{p}(n, k):=$ number of Catalan words of length n such that $\operatorname{des}(w)=k$.

$$
\begin{aligned}
\boldsymbol{C}_{p}(x) & :=\sum_{w \in \mathcal{C}(p)} x^{|w|}=\boldsymbol{C}_{p}(x, 1) . \\
\boldsymbol{D}_{p}(x) & :=\left.\frac{\partial \boldsymbol{C}_{p}(x, y)}{\partial y}\right|_{y=1} .
\end{aligned}
$$

We provide systematically the bivariate generating function for the number of Catalan words avoiding a given pair of relations with respect to the length and the number of descents.

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(\underline{001})$

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(001)$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(001)$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$
- $\mathcal{C}(<,>)=\mathcal{C}(\underline{010}, \underline{120})$.

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(001)$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$
- $\mathcal{C}(<,>)=\mathcal{C}(\underline{010}, \underline{120})$.

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(\underline{001})$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$
- $\mathcal{C}(<,>)=\mathcal{C}(\underline{010}, \underline{120})$.

There exists a bijection between the Catalan words avoiding 011 and those avoiding $\underline{001}$ preserving the number of descents.

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(\underline{001})$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$
- $\mathcal{C}(<,>)=\mathcal{C}(\underline{010}, \underline{120})$.

There exists a bijection between the Catalan words avoiding 011 and those avoiding $\underline{001}$ preserving the number of descents. Bijection (sketch) Replacing, from left to right, each factor $k^{j}(k+1)$ with the factor $k(k+1)^{j}(j \geq 2)$.

$$
\begin{aligned}
& 0001232223 \rightarrow 0111232223 \rightarrow 0122232223 \rightarrow \\
& 0123332223 \rightarrow 0123332333 .
\end{aligned}
$$

Cases $(=,<),(<,=)$, and $(<,>)$

- $\mathcal{C}(=,<)=\mathcal{C}(\underline{001})$
- $\mathcal{C}(<,=)=\mathcal{C}(\underline{011})$
- $\mathcal{C}(<,>)=\mathcal{C}(\underline{010}, \underline{120})$.

There exists a bijection between the Catalan words avoiding 011 and those avoiding $\underline{001}$ preserving the number of descents. Bijection (sketch) Replacing, from left to right, each factor $k^{j}(k+1)$ with the factor $k(k+1)^{j}(j \geq 2)$.

$$
\begin{aligned}
& 0001232223 \rightarrow 0111232223 \rightarrow 0122232223 \rightarrow \\
& 0123332223 \rightarrow 0123332333 .
\end{aligned}
$$

$$
\boldsymbol{C}_{(=,<)}(x, y)=\boldsymbol{C}_{(<,=)}(x, y)
$$

Cases $(=,<),(<,=)$, and $(<,>)$

$$
\boldsymbol{C}_{(<,>)}(x)=\boldsymbol{C}_{(=,<)}(x)=\boldsymbol{C}_{(<,=)}(x)
$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let $w=0\left(w^{\prime}+1\right) w^{\prime \prime}$ be the first return decomposition, where $w^{\prime}, w^{\prime \prime} \in \mathcal{C}(\underline{001})$.

Cases $(=,<),(<,=)$, and $(<,>)$

$$
\boldsymbol{C}_{(<,>)}(x)=\boldsymbol{C}_{(=,<)}(x)=\boldsymbol{C}_{(<,=)}(x)
$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let $w=0\left(w^{\prime}+1\right) w^{\prime \prime}$ be the first return decomposition, where $w^{\prime}, w^{\prime \prime} \in \mathcal{C}(\underline{001})$. As an example, the first return decomposition of $w=0122123011201$ is given by setting $w^{\prime}=011012$ and $w^{\prime \prime}=011201$. That is $w=0(122123)(011201)$

Cases $(=,<),(<,=)$, and $(<,>)$

$$
\boldsymbol{C}_{(<,>)}(x)=\boldsymbol{C}_{(=,<)}(x)=\boldsymbol{C}_{(<,=)}(x)
$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let $w=0\left(w^{\prime}+1\right) w^{\prime \prime}$ be the first return decomposition, where $w^{\prime}, w^{\prime \prime} \in \mathcal{C}(\underline{001})$.

1. 0α with $\alpha \in \mathcal{C}(<,>)$,
2. $0(\alpha+1)$ with $\alpha \in \mathcal{C}(<,>), \alpha \neq \epsilon$, or
3. $0(\alpha+1) \beta$ where α ends with $a(a+1)$ and $\beta \in \mathcal{C}(<,>), \beta \neq \epsilon$

Cases $(=,<),(<,=)$, and $(<,>)$

$$
\boldsymbol{C}_{(<,>)}(x)=\boldsymbol{C}_{(=,<)}(x)=\boldsymbol{C}_{(<,=)}(x)
$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let $w=0\left(w^{\prime}+1\right) w^{\prime \prime}$ be the first return decomposition, where $w^{\prime}, w^{\prime \prime} \in \mathcal{C}(\underline{001})$.

1. 0α with $\alpha \in \mathcal{C}(<,>)$,
2. $0(\alpha+1)$ with $\alpha \in \mathcal{C}(<,>), \alpha \neq \epsilon$, or
3. $0(\alpha+1) \beta$ where α ends with $a(a+1)$ and $\beta \in \mathcal{C}(<,>), \beta \neq \epsilon$

Generating Functions:

1. $x \boldsymbol{C}_{(<,>)}(x)$
2. $x\left(\boldsymbol{C}_{(<,>)}(x)-1\right)$
3. $x\left(\boldsymbol{C}_{(<,>)}(x)-1\right)\left(\boldsymbol{C}_{(<,>)}(x)-1-x-x\left(\boldsymbol{C}_{(<,>)}(x)-1\right)\right)$

Cases $(=,<),(<,=)$, and $(<,>)$

$$
\boldsymbol{C}_{(<,>)}(x)=\boldsymbol{C}_{(=,<)}(x)=\boldsymbol{C}_{(<,=)}(x)
$$

Proof.

Let w denote a non-empty Catalan word in $\mathcal{C}(<>)$, and let $w=0\left(w^{\prime}+1\right) w^{\prime \prime}$ be the first return decomposition, where $w^{\prime}, w^{\prime \prime} \in \mathcal{C}(\underline{001})$.

1. 0α with $\alpha \in \mathcal{C}(<,>)$,
2. $0(\alpha+1)$ with $\alpha \in \mathcal{C}(<,>), \alpha \neq \epsilon$, or
3. $O(\alpha+1) \beta$ where α ends with $a(a+1)$ and $\beta \in \mathcal{C}(<,>), \beta \neq \epsilon$

$$
\begin{aligned}
& \boldsymbol{C}_{(<,>)}(x)=1+x \boldsymbol{C}_{(<,>)}(x)+x\left(\boldsymbol{C}_{(<,>)}(x)-1\right) \\
& \quad+x\left(\boldsymbol{C}_{(<,>)}(x)-1\right)\left(\boldsymbol{C}_{(<,>)}(x)-1-x-x\left(\boldsymbol{C}_{(<,>)}(x)-1\right)\right)
\end{aligned}
$$

Cases $(=,<),(<,=)$, and $(<,>)$

The sets $\mathcal{C}(=,<)$ and $\boldsymbol{C}(<,>)=\boldsymbol{C}(\underline{010}, \underline{120})$ are in one-to-one correspondence, but the number of descents cannot be preserved.
$\mathcal{C}_{4}(<,>)=\{0000,0001,0011,0012,0110,0111,0112,0122,0123\}$.
$\mathcal{C}_{4}(=,<)=\{0000,0100,0101,0110,0111,0120,0121,0122,0123\}$.

Example: Cases $(=,<),(<,=)$, and $(<,>)$

Theorem
The g.f. $\boldsymbol{C}_{(=,<)}(x, y)$ and $\boldsymbol{C}_{(<,=)}(x, y)$ are given by

$$
\frac{(1-x+2 x y)(1-x)-\sqrt{(1-x)^{4}-(1-x) 4 x^{2} y}}{2 x y(1-x)} .
$$

Theorem
We have
$\boldsymbol{C}_{(<,>)}(x, y)=\frac{1-2 x+2 x y-x^{2} y-\sqrt{1-4 x+4 x^{2}-2 x^{2} y+x^{4} y^{2}}}{2 x y(1-x)}$.

Corollary

$$
\boldsymbol{c}_{(<,>)}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}, n \geq 1 .
$$

Corollary

$$
\boldsymbol{c}_{(<,>)}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}, n \geq 1
$$

Catalan words and Dyck path:

- $\boldsymbol{c}_{(<,=)}(n):=$ counts the Dyck paths of semilength n avoiding $U U D U$.

Corollary

$$
\boldsymbol{c}_{(<,>)}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}, n \geq 1
$$

Catalan words and Dyck path:

- $\boldsymbol{c}_{(<,=)}(n):=$ counts the Dyck paths of semilength n avoiding $U U D U$.
- $\boldsymbol{c}_{(=,,<)}(n):=$ counts the Dyck paths of semilength n avoiding $U D U U$.

Corollary

$$
\boldsymbol{c}_{(<,>)}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}, n \geq 1
$$

Catalan words and Dyck path:

- $\boldsymbol{c}_{(<,=)}(n):=$ counts the Dyck paths of semilength n avoiding $U U D U$.
- $\boldsymbol{c}_{(=,<)}(n):=$ counts the Dyck paths of semilength n avoiding $U D U U$.
- But, not all the cases have an easy interpretation in terms of Dyck paths.

Corollary

The g.f. for the total number of descents on $\mathcal{C}(<,>)$ is

$$
\boldsymbol{D}_{(<,>)}(x)=\frac{1-4 x+3 x^{2}-(1-2 x) \sqrt{1-4 x+2 x^{2}+x^{4}}}{2(1-x) x \sqrt{1-4 x+2 x^{2}+x^{4}}}
$$

The series expansion of $\boldsymbol{D}_{(<,>)}(x)$ is

$$
x^{4}+6 x^{5}+26 x^{6}+100 x^{7}+363 x^{8}+1277 x^{9}+O\left(x^{10}\right),
$$

where the coefficient sequence does not appear in OEIS.

Summarizing...

Constante cases:

(X, Y)	Cardinality of $\mathcal{C}_{n}(X, Y), n \geq 1$
$(\leq, \geq),(\leq, \neq)$	$1,2,2,2, \ldots$
(\leq, \leq)	$1,2,1,2,1,2, \ldots$
(\neq, \leq)	$1,2,3,3,3, \ldots$

(X, Y)	Cardinality of $\mathcal{C}_{n}(X, Y), n \geq 1$	OEIS
$(=,=)$	$\boldsymbol{c}_{\underline{000}}(n)=\sum_{k=1}^{n}\binom{k}{n-k} m_{k-1}$	$\underline{\text { A247333 }}$
$(=, \geq)$	$1,2,4,10,26,72,206,606,1820,5558, \ldots$	$\underline{\text { A102407 }}$
$(\geq,=)$	$1,2,4,10,26,72,206,606,1820,5558, \ldots$	$\underline{\text { A102407 }}$
$(=,>)$	$C_{\underline{110}}(x)=\frac{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}{2 x(1-x)}$	$\underline{\text { A087626 }}$
$(>,=)$	$C_{\underline{100}}(x)=\frac{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}{2 x(1-x)}$	$\underline{\text { A087626 }}$
$(=, \leq)$	$1,2,3,7,17,43,114,310,861,2433, \ldots$	$\underline{\text { A143013 }}$
$(\leq,=)$	$1,2,3,7,17,43,114,310,861,2433, \ldots$	$\underline{\text { A143013 }}$
$(=,<)$	$\boldsymbol{c}_{001}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	$\underline{\text { A105633 }}$
$(<,=)$	$\boldsymbol{c}_{011}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k-1}{n-2 k-1}$	$\underline{\text { A105633 }}$
$(<,>)$	$\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	$\underline{\text { A105633 }}$
$(=, \neq)$	$1,2,4,8,17,38,89,216,539,1374, \ldots$	$\underline{\text { A086615 }}$
$(\neq,=)$	$1,2,4,8,17,38,89,216,539,1374, \ldots$	$\underline{\text { A086615 }}$
(\geq, \geq)	$m_{n}($ Motzkin numbers $)$	$\underline{\text { A001006 }}$
$(<,<)$	$m_{n}($ Motzkin numbers $)$	$\underline{\text { A001006 }}$

$(X, Y) \quad$ Cardinality of $\mathcal{C}_{n}(\Lambda$, Dyck paths avoiding UDUDU

($=,=$)	$c_{000}(n)=\sum_{k=1}^{n}\binom{k}{n-k} m_{k-1}$	247333
$(=, \geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558, ...	A102407
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
$(=,>)$	$C_{110}(x)=\frac{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}{2 x(1-x)}$	A087626
($>,=$)	$C_{100}(x)=\frac{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}{2 x(1-x)}$	A087626
$(=, \leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	A143013
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433, \ldots	A143013
$(=,<)$	$\boldsymbol{c}_{001}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(<,=)$	$c_{011}(n)=\sum_{k=0}^{[(n-1) / 2]} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{(2 n-3 k}{n-2 k-1}$	A105633
$(<,>)$	$\sum_{k=0}^{[(n-1) / 2]} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(=, \neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, ..	A086615
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, .	A086615
(\geq, \geq)	m_{n} (Motzkin numbers)	A001006
$(<,<)$	m_{n} (Motzkin numbers)	A001006

(X, Y)	Cardinality of $\mathcal{C}_{n}(X, Y), n \geq 1$	OEIS
$(=,=)$	$c_{000}(n)=\sum_{k=1}^{n}\binom{k}{n-k} m_{k-1}$	A247333
$(=, \geq)$	1, 2, 4, 10, 26, 72, 206. \quad กn 10 had no combinatorial interpre	
$(\geq,=)$		
$(=,>)$	$C_{110}(x)=\frac{1-2 x^{2}-\sqrt{11-4 x+4 x^{3}}}{2 x(1-x)} \quad \text { A087626 }$	
($>,=$)	$C_{100}(x)=\frac{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}{2 x(1-x)}$	A087626
$(=, \leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433, \ldots	A143013
$(\leq,=)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433, ...	A143013
$(=,<)$	$c_{001}(n)=\sum_{k=0}^{[(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(<,=)$	$\boldsymbol{c}_{\underline{011}}(n)=\sum_{k=0}^{\text {[n-1)/2] }} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(<,>)$	$\sum_{k=0}^{[(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(=, \neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, \ldots	A086615
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, ..	A086615
(\geq, \geq)	m_{n} (Motzkin numbers)	A001006
$(<,<)$	m_{n} (Motzkin numbers)	A001006

(X, Y)	Cardinality of $\mathcal{C}_{n}(X, Y), n \geq 1$	OEIS
$(=,=)$	$\boldsymbol{c}_{\underline{000}}(n)=\sum_{k=1}^{n}\binom{k}{n-k} m_{k-1}$	A247333
$(=, \geq)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558,	A102407
$(\geq,=)$	1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558, .	A102407
$(=,>)$	$C_{110}(x)=\underline{1-2 x^{2}-\sqrt{1-4 x+4 x^{3}}}$	
$(>,=)$	$C_{100}(\infty)$ Motzkin path with 2 kinds of level steps.	
$(=, \leq)$	1, 2, 3, 7, 17, 43, 114, 310, 861, 2433,	143013
$(\leq,=)$	$1,2,3,7,17,43,114,310,861,2433, \ldots$	A143013
$(=,<)$	$\boldsymbol{c}_{001}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(<,=)$	$\boldsymbol{c}_{\underline{011}}(n)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(<,>)$	$\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}\binom{2 n-3 k}{n-2 k-1}$	A105633
$(=, \neq)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374,	A086615
$(\neq,=)$	1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, ..	A086615
(\geq, \geq)	m_{n} (Motzkin numbers)	A001006
$(<,<)$	m_{n} (Motzkin numbers)	A001006

(X, Y)	Cardinality of $\mathcal{C}_{n}(X, Y), n \geq 1$	OEIS
$(\geq,>)$	1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, ...	A082582
$(>, \geq)$	$1,2,5,13,35,97,275,794,2327$ Fibonacci numbers 	
$(>,<)$		
(\geq, \leq)	F_{n+1} (Fibonacci number)	A000045
$(\leq,<)$	F_{n+1} (Fibonacci number)	A000045
$(<, \leq)$	F_{n+1} (Fibonacci number)	A000045
$(\geq,<)$	2^{n-1}	A011782
$(\leq,>)$	2^{n-1}	A011782
(\geq, \neq)		
$(>,>)$	$=\sum_{k=0}^{[n / 2]} \frac{1}{n-k}\binom{n-k}{k}\binom{n-k}{k+1} 2 \quad \text { Pell numbers }$	
$(>, \leq)$	P_{n+1}	A000129

$(>, \neq)$	$1,2,5,13,34,90,242,660,1821,5073, \ldots$	New
$(<, \gg$	n	$\underline{\text { A000027 }}$
(\neq, \geq)	n	$\underline{\text { A000027 }}$
$(<, \neq)$	$1,2,3,6,12,25,54,119,267,608, \ldots$	
$(\neq,>)$	$1,2,4,9,22,56,146,388,1048,2869, \ldots$	$\underline{\text { A152225 }}$
$(\neq,<)$	$1,2,4,8,17,37,82,185,423,978, \ldots$	$\underline{\text { A292460 }}$
(\neq, \neq)	$1,2,3,6,11,22,43,87,176,362, \ldots$	$\underline{\text { A026418 }}$

Further Driections

- Let $\boldsymbol{c}_{p}(n, k)$ denote the number of Catalan words (avoiding the consecutive pattern p) of length n, whose last symbol is equal to k.
- Let \mathcal{T}_{p} be the infinite matrix $\mathcal{T}_{p}:=\left(\boldsymbol{c}_{p}(n, k)\right)_{n \geq 1, k \geq 0}$.

Example

The first few rows of the matrix $\mathcal{T}_{\underline{010}}$ are

$$
\mathcal{T}_{\underline{010}}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{3} & \mathbf{3} & \mathbf{3} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\
9 & 8 & 6 & 4 & 1 & 0 & 0 & 0 & 0 \\
25 & 25 & 16 & 10 & 5 & 1 & 0 & 0 & 0 \\
73 & 74 & 51 & 28 & 15 & 6 & 1 & 0 & 0 \\
223 & 223 & 159 & 91 & 45 & 21 & 7 & 1 & 0 \\
697 & 696 & 496 & 296 & 150 & 68 & 28 & 8 & 1
\end{array}\right)
$$

Riordan Arrays

Definition

A Riordan array is an infinite lower triangular matrix whose k-th column has generating function $g(x) f(x)^{k}$ for all $k \geq 0$, for some formal power series $g(x)$ and $f(x)$ with $g(0) \neq 0, f(0)=0$, and $f^{\prime}(0) \neq 0$. Such a Riordan array is denoted by $(g(x), f(x))$.

$$
(g(x), f(x))=:\left(\begin{array}{cccc}
l_{00} & & & \\
l_{10} & l_{11} & & \\
l_{20} & l_{21} & l_{22} & l_{33} \\
l_{30} & l_{31} & l_{32} & \vdots \\
\vdots & \vdots & \vdots & g(x) f^{3}(x)
\end{array}\right)
$$

The product of two Riordan arrays $(g(x), f(x))$ and $(h(x), l(x))$ is defined by

$$
\begin{equation*}
(g(x), f(x)) *(h(x), l(x))=(g(x) h(f(x)), l(f(x))) . \tag{1}
\end{equation*}
$$

Under this operation, the set of all Riordan arrays is a group.

The product of two Riordan arrays $(g(x), f(x))$ and $(h(x), l(x))$ is defined by

$$
\begin{equation*}
(g(x), f(x)) *(h(x), l(x))=(g(x) h(f(x)), l(f(x))) . \tag{1}
\end{equation*}
$$

Under this operation, the set of all Riordan arrays is a group.
Theorem
The matrix \mathcal{T}_{010} is a Riordan array given by

$$
\begin{gathered}
\left(1, \frac{1+x^{2}-\sqrt{1-4 x+2 x^{2}-4 x^{3}+x^{4}}}{2\left(1+x^{2}\right)}\right) \\
=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 3 & 3 & 3 & 1 & 0 & 0 & 0 \\
0 & 9 & 8 & 6 & 4 & 1 & 0 & 0 \\
0 & 25 & 25 & 16 & 10 & 5 & 1 & 0 \\
0 & 73 & 74 & 51 & 28 & 15 & 6 & 1
\end{array}\right) .
\end{gathered}
$$

Theorem
If C_{n} denotes the n-th Catalan number, then for $n \geq 2$ and $k \geq 0$,

$$
c_{\underline{010}}(n, k)=\sum_{\ell=0}^{n-1} c_{\underline{010}}(n-1, k-1-\ell) a_{\ell},
$$

where

$$
\begin{aligned}
& a_{n}:=1+\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{i+1}\binom{n-i-1}{i} \bar{C}_{n-i-1} \quad \text { and } \\
& \bar{C}_{n}:= \begin{cases}C_{\frac{n-1}{2}}, & \text { if } n \text { is odd; } \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Theorem
For $p \in\{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_{p} are Riordan arrays.

Theorem
For $p \in\{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_{p} are Riordan arrays.
The matrix related to the pattern $\underline{012}$ can not be a Riordan array.

Theorem
For $p \in\{\underline{010}, \underline{000}, \underline{210}, \underline{120}, \underline{100}, \underline{110}, \underline{001}, \underline{101}, \underline{120}, \underline{100}, \underline{110}\}$, the matrices \mathcal{T}_{p} are Riordan arrays.
The matrix related to the pattern 012 can not be a Riordan array.
Problem: What is the combinatorial interpretation of the inverse matrix? For example, the absolute value of the second and third columns of the inverse matrix $\left(\mathcal{M}_{\underline{010}}^{f(x)=1}\right)^{-1}$ are the sequences A104545 (number of Motzkin paths of length n having no consecutive $(1,0)$ steps) and A256169, respectively.

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & -3 & 3 & -3 & 1 & 0 & 0 & 0 \\
0 & 5 & -8 & 6 & -4 & 1 & 0 & 0 \\
0 & -11 & 17 & -16 & 10 & -5 & 1 & 0 \\
0 & 25 & -38 & 39 & -28 & 15 & -6 & 1
\end{array}\right) .
$$

Thank you!

