Cyclic Shuffle Compatibility

Jinting Liang
Michigan State University
Bruce Sagan
Michigan State University
Yan Zhuang Davidson College

Permutation Patterns 2023

Jinting Liang

Yan Zhuang

Linear shuffle-compatibility

Quasisymmetric functions

The cyclic case

Comments and an open question

Let $\mathbb{P}=\{1,2,3, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$. Consider $S \subseteq \mathbb{P}$ with $|S|$, the cardinality of S, finite. A (linear) permutation of S is a linear ordering $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ of the set S.
Ex. If $S=\{2,4,7\}$ then one possible permutation is $\pi=472$. A statistic is a function st whose domain is all permutations.
Examples include the descent set of $\pi=\pi_{1} \ldots \pi_{n}$

$$
\operatorname{Des} \pi=\left\{i: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

and the descent number of π

$$
\operatorname{des} \pi=|\operatorname{Des} \pi|
$$

Note that $\operatorname{des} \pi$ in the number of copies of the consecutive pattern 21 in π.

Ex. If $\pi=73698=\pi_{1}>\pi_{2}<\pi_{3}<\pi_{4}>\pi_{5}$ then

$$
\operatorname{Des} \pi=\{1,4\}, \quad \operatorname{des} \pi=2
$$

If π, σ are permutations with $\pi \cap \sigma=\emptyset$ then their shuffle set is

$$
\pi Ш \sigma=\{\tau:|\tau|=|\pi|+|\sigma| \text { and } \pi, \sigma \text { are subwords of } \tau\}
$$

Ex. We have

$$
25 Ш \mathbf{7 4}=\{2574,2754,2745,7254,7245,7425\} .
$$

Note that

$$
\operatorname{des}(25 ш 74)=\{\{1,1,1,2,2,2\}\}=\operatorname{des}(12 \amalg 43)
$$

Statistic st is shuffle-compatible if the multiset $\operatorname{st}(\pi Ш \sigma)$ depends only on st π, st $\sigma,|\pi|$, and $|\sigma|$.
Theorem (Stanley)
Both Des and des are shuffle-compatible.
Shuffle-compatibility is implicit in the work of Stanley on P-partitions. It was explicitly defined and studied using algebras whose multiplication involves shuffles by Gessel and Zhuang. Further work in the linear case was done by Grinberg, by Oğuz, and by Baker-Jarvis and S .

Let $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$. Monomial $x_{i}^{a} x_{j}^{b} \cdots x_{k}^{c}$ with $i<j<\ldots<k$, has exponent sequence $a b \ldots c$, and degree $=a+b+\cdots+c$.
Ex. $x_{1}^{2} x_{3}^{4} x_{6}^{2}$ has exponents sequence 242 and degree $2+4+2=8$.
A formal power series $f(\mathbf{x})$ is quasisymmetric if any two monomials with the same exponent sequence have the same coefficient.

Ex.
$f(\mathbf{x})=7 x_{1}^{4}+7 x_{2}^{4}+\cdots-x_{1}^{2} x_{2}-x_{1}^{2} x_{3}-\cdots=7 \sum_{i} x_{i}^{4}-\sum_{i<j} x_{i}^{2} x_{j}$.
The algebra of quasisymmetric functions, $\mathrm{QSym}=\mathrm{QSym}(\mathbf{x})$, is the set of all $f(\mathbf{x})$ which are quasisymmetric of bounded degree. A basis for QSym is given by Gessel's fundamental quasisymmetric functions $F_{S, n}$ defined for each given n and $S \subseteq[n-1]$. If π is a permutation with $|\pi|=n$ and $\operatorname{Des} \pi=S$ we define $F_{\operatorname{Des} \pi}=F_{S, n}$.
Theorem (Gessel)
We have

$$
F_{\mathrm{Des} \pi} F_{\operatorname{Des} \sigma}=\sum_{\tau \in \pi Ш \sigma} F_{\operatorname{Des} \tau} .
$$

For the formula to be well defined, Des must be shuffle-compatible.

Given a linear permutation statistic st, we define an equivalence relation, \sim, on permutations by letting $\pi \sim \sigma$ if $|\pi|=|\sigma|$ and st $\pi=$ st σ. Denote the equivalence class of π by $\mathrm{cl} \pi$.
Ex. If st $=$ des then $132 \sim 846$ since $|132|=3=|846|$ and $\operatorname{des} 132=1=\operatorname{des} 846$. Also cl $132=\{132,213, \ldots, 846, \ldots\}$.
Call st a descent statistic if for any permutations π, σ with $|\pi|=|\sigma|$ and $\operatorname{Des} \pi=\operatorname{Des} \sigma$ we have st $\pi=$ st σ.
Ex. We have des is a descent statistic because if $\operatorname{Des} \pi=\operatorname{Des} \sigma$ then $\operatorname{des} \pi=|\operatorname{Des} \pi|=|\operatorname{Des} \sigma|=\operatorname{des} \sigma$.
Note that if st is a descent statistic then for any permutations π, σ we have $|\pi|=|\sigma|$ and $\operatorname{Des} \pi=\operatorname{Des} \sigma$ implies $\mathrm{cl} \pi=\mathrm{cl} \sigma$.

Theorem (Gessel-Zhuang)

Let st be a descent statistic on linear permutations. Then st is shuffle-compatible if and only if there is an algebra A with basis $\left\{b_{\mathrm{cl} \pi}\right\}$ such that the map QSym \rightarrow A obtained by linearly extending $F_{\text {Des } \pi} \mapsto b_{\mathrm{cl} \pi}$ is an algebra homomorphism.
Gessel and Zhuang use this result to prove shuffle-compatibility of many permutation statistics by finding a corresponding algebra A.

A linear permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ of a set S has a corresponding cyclic permutation

$$
[\pi]=\left\{\pi_{1} \pi_{2} \ldots \pi_{n}, \pi_{2} \ldots \pi_{n} \pi_{1}, \ldots, \pi_{n} \pi_{1} \ldots \pi_{n-1}\right\}
$$

A cyclic statistic is a function cst whose domain in all cyclic permutations. Cyclic statistics can be lifted from linear ones. The cyclic descent set of a linear permutation $\pi=\pi_{1} \ldots \pi_{n}$ is

$$
\mathrm{cDes} \pi=\left\{i: \pi_{i}>\pi_{i+1} \text { where } i \text { is taken modulo } n\right\}
$$

and the cyclic descent number of π is

$$
\operatorname{cdes} \pi=|\mathrm{cDes} \pi|
$$

Ex. If $\pi=73698$ then $\mathrm{cDes} \pi=\{1,4,5\}$ and $\operatorname{cdes} \pi=3$.
Note that $\emptyset \subset$ cDes $\pi \subset[n]$. Such a statistic is called non-Escher. Now define analogues for cyclic permutations by

$$
\operatorname{cDes}[\pi]=\{\{\operatorname{cDes} \sigma \mid \sigma \in[\pi]\}\} \quad \text { and } \quad \operatorname{cdes}[\pi]=\operatorname{cdes} \pi
$$

Note cdes $[\pi]$ is well defined since cdes σ is the same for all $\sigma \in[\pi]$.
Ex. $[1536]=\{1536,5361,3614,6153\}$ so we have $\mathrm{cDes}[1536]=\{\{\{2,4\},\{1,3\},\{2,4\},\{1,3\}\}\}$ and $\operatorname{cdes}[1536]=2$.

If $S \subseteq[n]$ and $i \in[n]$ then the cyclic shift of S by i is

$$
S+i=\{s+i(\bmod n) \mid s \in S\}
$$

and let $[S]=\{S+i \mid i \in[n]\}$.
Ex. If $\pi=\pi_{1} \ldots \pi_{n}$ is a linear permutation of S then

$$
\operatorname{cDes}[\pi]=\{\{\mathrm{cDes} \pi+i \mid i \in[n]\}\}=[\mathrm{cDes} \pi] .
$$

Cyclic permutations [π], [σ] with $\pi \cap \sigma=\emptyset$ have cyclic shuffle set

$$
[\pi] \amalg[\sigma]=\left\{[\tau] \mid \tau=\pi^{\prime} ш \sigma^{\prime} \text { where } \pi^{\prime} \in[\pi], \sigma^{\prime} \in[\sigma]\right\}
$$

Statistic cst is cyclic shuffle-compatible if the multiset $\operatorname{cst}([\pi] \amalg[\sigma])$ depends only on $\operatorname{cst}[\pi], \operatorname{cst}[\sigma],|\pi|$, and $|\sigma|$.
Theorem (Adin, Gessel, Reiner, and Roichman) Both cDes and cdes are cyclic shuffle-compatible.

Adin, Gessel, Reiner and Roichman defined a cyclic analogue of the fundamental quasisymmetric functions, $F_{[S], n}$, for non-Escher subsets S of $[n]$. The algebra generated by the $F_{[S]}$ is denoted cQSym ${ }^{-}$. They needed cyclic shuffle-compaitibility to prove that a certain formula for multiplying these functions was well defined. Domagalski, Liang, Minnich, S, Schmidt, and Sietema found a combinatorial way to lift linear shuffle-compatibility result to the cyclic realm. Liang, S, and Zhuang have shown how cyclic shuffle-compatibility could be proved algebraically.
Theorem (Liang-S-Zhuang)
Let cst be a cyclic descent statistic. Then cst is cyclic shuffle-compatible if and only if there is an algebra C with basis $\left\{b_{\mathrm{cl}[\pi]}\right\}$ such that the map cQSym ${ }^{-} \rightarrow$ C obtained by linearly extending $F_{\mathrm{cDes}[\pi]} \mapsto b_{\mathrm{cl}[\pi]}$ is an algebra homomorphism.

Our other results include the following.

1. Proofs of cyclic shuffle-compatibility of cDes, cdes, cPk, cpk, Des, des, Pk, cpk, epk, eval, (cpk, cdes), (val, des), (cval, cdes), and (epk, des).
2. Explicit descriptions of the cyclic shuffle algebras C for various statistics.
3. Formulation of a result for deriving cyclic shuffle-compatibility results from linear ones.
4. Description of various equivalences and symmetries between statistics.

The inversion number of a linear permutation $\pi=\pi_{1} \ldots \pi_{n}$ is

$$
\text { inv } \pi=\text { number of copies of the pattern } 21 \text { in } \pi \text {. }
$$

The inversion number is not shuffle-compatible. Given a permutation π let $\bar{\pi}$ be the corresponding consecutive pattern. Let $\bar{\Pi}$ be a set of consecutive patterns. Define a statistic on permutations σ by

$$
\operatorname{st}_{\bar{\Pi}}(\sigma)=\text { number of copies of a } \bar{\pi} \in \bar{\Pi} \text { in } \sigma .
$$

Note that

$$
\operatorname{st}_{\overline{21}}(\sigma)=\operatorname{des} \sigma
$$

and

$$
\mathrm{st}_{\{\overline{132}, \overline{231}\}}(\sigma)=\operatorname{pk} \sigma,
$$

the number of peaks of σ. Both des and pk are shuffle compatible.
Question
For what $\bar{\Pi}$ is $\mathrm{st}_{\bar{\Pi}}$ shuffle compatible?

* Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman. Cyclic quasi-symmetric functions. Israel J. Math., 243(1):437—500, 2021.
* Rachel Domagalski, Jinting Liang, Quinn Minnich, Bruce E. Sagan, Jamie Schmidt, and Alexander Sietsema. Cyclic shuffle compatibility. Sém. Lothar. Combin., 85:Art. B85d, 11 pp., 2020-2021.
* Ira M. Gessel. Multipartite P-partitions and inner products of skew Schur functions. em Contemp. Math., 34:289-317, 1984.
* Ira M. Gessel and Yan Zhuang. Shuffle-compatible permutation statistics. Adv. Math., 332:85-141, 2018.
* Cyclic shuffle-compatibility via cyclic shuffle algebras. Jinting Liang, Bruce E. Sagan, Yan Zhuang. arXiv:2212.14522.
* Richard P. Stanley. Ordered structures and partitions. Memoirs of the American Mathematical Society, No. 119. American Mathematical Society, Providence, R.I., 1972.

THANKS FOR

LISTENING!

MERCI POUR
VOTRE ATTENTION

