Cyclic Shuffle Compatibility

Jinting Liang Michigan State University Bruce Sagan Michigan State University Yan Zhuang Davidson College

Permutation Patterns 2023

Jinting Liang

Yan Zhuang

Linear shuffle-compatibility

Quasisymmetric functions

The cyclic case

Comments and an open question

Let $\mathbb{P} = \{1, 2, 3, ...\}$ and $[n] = \{1, 2, ..., n\}$. Consider $S \subseteq \mathbb{P}$ with |S|, the *cardinality* of *S*, finite. A *(linear) permutation* of *S* is a linear ordering $\pi = \pi_1 \pi_2 ... \pi_n$ of the set *S*. **Ex.** If $S = \{2, 4, 7\}$ then one possible permutation is $\pi = 472$. A *statistic* is a function st whose domain is all permutations. Examples include the *descent set* of $\pi = \pi_1 ... \pi_n$

$$\mathrm{Des}\,\pi=\{i\ :\ \pi_i>\pi_{i+1}\}\subseteq [n-1],$$

and the descent number of π

$$\operatorname{des} \pi = |\operatorname{Des} \pi|.$$

Note that $des \pi$ in the number of copies of the consecutive pattern 21 in π .

Ex. If $\pi = 73698 = \pi_1 > \pi_2 < \pi_3 < \pi_4 > \pi_5$ then

Des
$$\pi = \{1, 4\}, \text{ des } \pi = 2.$$

If π, σ are permutations with $\pi \cap \sigma = \emptyset$ then their *shuffle set* is

 $\pi \sqcup \sigma = \{\tau \ : \ |\tau| = |\pi| + |\sigma| \text{ and } \pi, \sigma \text{ are subwords of } \tau\}.$

Ex. We have

 $25 \sqcup \textbf{74} = \{25\textbf{74}, \ 2\textbf{754}, \ 2\textbf{745}, \ \textbf{7254}, \ \textbf{7245}, \ \textbf{7425}\}.$

Note that

 $\mathrm{des}(25\sqcup 74) = \{\{1,1,1,2,2,2\}\} = \mathrm{des}(12\sqcup 43).$

Statistic st is *shuffle-compatible* if the multiset $st(\pi \sqcup \sigma)$ depends only on $st \pi, st \sigma, |\pi|$, and $|\sigma|$.

Theorem (Stanley)

Both Des and des are shuffle-compatible.

Shuffle-compatibility is implicit in the work of Stanley on *P*-partitions. It was explicitly defined and studied using algebras whose multiplication involves shuffles by Gessel and Zhuang. Further work in the linear case was done by Grinberg, by Oğuz, and by Baker-Jarvis and S. Let $\mathbf{x} = \{x_1, x_2, ...\}$. Monomial $x_i^a x_j^b \cdots x_k^c$ with i < j < ... < k, has exponent sequence $ab \ldots c$, and degree $= a + b + \cdots + c$. **Ex.** $x_1^2 x_3^4 x_6^2$ has exponents sequence 242 and degree 2 + 4 + 2 = 8. A formal power series $f(\mathbf{x})$ is *quasisymmetric* if any two monomials with the same exponent sequence have the same coefficient.

Ex. $f(\mathbf{x}) = 7x_1^4 + 7x_2^4 + \dots - x_1^2x_2 - x_1^2x_3 - \dots = 7\sum_i x_i^4 - \sum_{i < j} x_i^2x_j$. The algebra of quasisymmetric functions, QSym = QSym(\mathbf{x}), is the set of all $f(\mathbf{x})$ which are quasisymmetric of bounded degree. A basis for QSym is given by Gessel's fundamental quasisymmetric functions $F_{S,n}$ defined for each given n and $S \subseteq [n-1]$. If π is a permutation with $|\pi| = n$ and $\text{Des } \pi = S$ we define $F_{\text{Des } \pi} = F_{S,n}$. Theorem (Gessel)

We have

$$F_{\mathrm{Des}\,\pi}F_{\mathrm{Des}\,\sigma} = \sum_{\tau\in\pi\sqcup\sqcup\sigma}F_{\mathrm{Des}\,\tau}.$$

For the formula to be well defined, Des must be shuffle-compatible.

Given a linear permutation statistic st, we define an equivalence relation, \sim , on permutations by letting $\pi \sim \sigma$ if $|\pi| = |\sigma|$ and st $\pi = \operatorname{st} \sigma$. Denote the equivalence class of π by cl π . **Ex.** If st = des then 132 \sim 846 since |132| = 3 = |846| and des 132 = 1 = des 846. Also cl 132 = {132, 213, ..., 846, ...}. Call st a *descent statistic* if for any permutations π, σ with $|\pi| = |\sigma|$ and $\operatorname{Des} \pi = \operatorname{Des} \sigma$ we have st $\pi = \operatorname{st} \sigma$. **Ex.** We have des is a descent statistic because if $\operatorname{Des} \pi = \operatorname{Des} \sigma$ then $\operatorname{des} \pi = |\operatorname{Des} \pi| = |\operatorname{Des} \sigma| = \operatorname{des} \sigma$. Note that if st is a descent statistic then for any permutations π, σ

we have $|\pi| = |\sigma|$ and $\text{Des } \pi = \text{Des } \sigma$ implies $\text{cl } \pi = \text{cl } \sigma$.

Theorem (Gessel-Zhuang)

Let st be a descent statistic on linear permutations. Then st is shuffle-compatible if and only if there is an algebra A with basis $\{b_{cl\,\pi}\}$ such that the map QSym \rightarrow A obtained by linearly extending $F_{Des\,\pi} \mapsto b_{cl\,\pi}$ is an algebra homomorphism.

Gessel and Zhuang use this result to prove shuffle-compatibility of many permutation statistics by finding a corresponding algebra *A*.

A linear permutation $\pi = \pi_1 \pi_2 \dots \pi_n$ of a set *S* has a corresponding *cyclic permutation*

$$[\pi] = \{\pi_1 \pi_2 \dots \pi_n, \ \pi_2 \dots \pi_n \pi_1, \ \dots, \ \pi_n \pi_1 \dots \pi_{n-1}\}.$$

Ex. [3651] = {3651, 6513, 5136, 1365}
= [5136]. 1

ŝ

A *cyclic statistic* is a function cst whose domain in all cyclic permutations. Cyclic statistics can be lifted from linear ones. The *cyclic descent set* of a linear permutation $\pi = \pi_1 \dots \pi_n$ is

cDes $\pi = \{i : \pi_i > \pi_{i+1} \text{ where } i \text{ is taken modulo } n\},\$

and the *cyclic descent number* of π is

 $\operatorname{cdes} \pi = |\operatorname{cDes} \pi|.$

Ex. If $\pi = 73698$ then cDes $\pi = \{1, 4, 5\}$ and cdes $\pi = 3$.

Note that $\emptyset \subset cDes \pi \subset [n]$. Such a statistic is called *non-Escher*. Now define analogues for cyclic permutations by

 $cDes[\pi] = \{ \{cDes \sigma \mid \sigma \in [\pi] \} \}$ and $cdes[\pi] = cdes \pi$.

Note cdes[π] is well defined since cdes σ is the same for all $\sigma \in [\pi]$. **Ex.** [1536] = {1536, 5361, 3614, 6153} so we have cDes[1536] = {{ {2,4}, {1,3}, {2,4}, {1,3} }} and cdes[1536] = 2. If $S \subseteq [n]$ and $i \in [n]$ then the cyclic shift of S by i is

 $S+i=\{s+i \pmod{n} \mid s\in S\}.$

and let $[S] = \{S + i \mid i \in [n]\}$. Ex. If $\pi = \pi_1 \dots \pi_n$ is a linear permutation of S then

 $cDes[\pi] = \{ \{cDes \pi + i \mid i \in [n] \} \} = [cDes \pi].$

Cyclic permutations $[\pi], [\sigma]$ with $\pi \cap \sigma = \emptyset$ have *cyclic shuffle set*

$$[\pi] \sqcup\!\!\!\sqcup [\sigma] = \{ [\tau] \mid \tau = \pi' \sqcup\!\!\!\sqcup \sigma' \text{ where } \pi' \in [\pi], \sigma' \in [\sigma] \}.$$

Statistic cst is *cyclic shuffle-compatible* if the multiset $cst([\pi] \sqcup [\sigma])$ depends only on $cst[\pi], cst[\sigma], |\pi|$, and $|\sigma|$. Theorem (Adin, Gessel, Reiner, and Roichman) Both cDes and cdes are cyclic shuffle-compatible. Adin, Gessel, Reiner and Roichman defined a cyclic analogue of the fundamental quasisymmetric functions, $F_{[S],n}$, for non-Escher subsets S of [n]. The algebra generated by the $F_{[S]}$ is denoted cQSym⁻. They needed cyclic shuffle-compatibility to prove that a certain formula for multiplying these functions was well defined. Domagalski, Liang, Minnich, S, Schmidt, and Sietema found a combinatorial way to lift linear shuffle-compatibility result to the cyclic realm. Liang, S, and Zhuang have shown how cyclic shuffle-compatibility could be proved algebraically.

Theorem (Liang-S-Zhuang)

Let cst be a cyclic descent statistic. Then cst is cyclic shuffle-compatible if and only if there is an algebra C with basis $\{b_{cl[\pi]}\}\$ such that the map cQSym⁻ \rightarrow C obtained by linearly extending $F_{cDes[\pi]} \mapsto b_{cl[\pi]}$ is an algebra homomorphism. Our other results include the following.

1. Proofs of cyclic shuffle-compatibility of cDes, cdes, cPk, cpk, Des, des, Pk, cpk, eval, (cpk, cdes), (val, des), (cval, cdes), and (epk, des).

2. Explicit descriptions of the cyclic shuffle algebras C for various statistics.

3. Formulation of a result for deriving cyclic shuffle-compatibility results from linear ones.

4. Description of various equivalences and symmetries between statistics.

The *inversion number* of a linear permutation $\pi = \pi_1 \dots \pi_n$ is

inv π = number of copies of the pattern 21 in π .

The inversion number is not shuffle-compatible. Given a permutation π let $\overline{\pi}$ be the corresponding consecutive pattern. Let $\overline{\Pi}$ be a set of consecutive patterns. Define a statistic on permutations σ by

$$\operatorname{st}_{\overline{\Pi}}(\sigma) = \operatorname{number} \operatorname{of} \operatorname{copies} \operatorname{of} \operatorname{a} \overline{\pi} \in \overline{\Pi} \operatorname{in} \sigma.$$

Note that

$$\operatorname{st}_{\overline{21}}(\sigma) = \operatorname{des} \sigma$$

and

$$\operatorname{st}_{\{\overline{132},\overline{231}\}}(\sigma) = \operatorname{pk} \sigma,$$

the number of peaks of σ . Both des and pk are shuffle compatible. Question For what $\overline{\Pi}$ is st_{$\overline{\Pi}$} shuffle compatible? * Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman. Cyclic quasi-symmetric functions. *Israel J. Math.*, 243(1):437—500, 2021.

* Rachel Domagalski, Jinting Liang, Quinn Minnich, Bruce E. Sagan, Jamie Schmidt, and Alexander Sietsema. Cyclic shuffle compatibility. *Sém. Lothar. Combin.*, 85:Art. B85d, 11 pp., 2020–2021.

* Ira M. Gessel. Multipartite P-partitions and inner products of skew Schur functions. em Contemp. Math., 34:289—317, 1984.

* Ira M. Gessel and Yan Zhuang. Shuffle-compatible permutation statistics. *Adv. Math.*, 332:85—141, 2018.

* Cyclic shuffle-compatibility via cyclic shuffle algebras. Jinting Liang, Bruce E. Sagan, Yan Zhuang. *arXiv:2212.14522* .

* Richard P. Stanley. Ordered structures and partitions. *Memoirs of the American Mathematical Society*, No. 119. American Mathematical Society, Providence, R.I., 1972.

THANKS FOR LISTENING!

MERCI POUR VOTRE ATTENTION