Inversion sequences avoiding pairs of patterns

Benjamin Testart
Université de Lorraine, LORIA (Nancy, France)
Permutation Patterns, July 2023

(1) Introduction

(2) Generating trees

3 Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima

6 Perspectives

Inversion sequences (1/2)

An inversion sequence is a finite sequence of integers $\left(\sigma_{i}\right)_{i \in\{1, \ldots, n\}}$ such that

$$
0 \leqslant \sigma_{i}<i \quad \forall i \in\{1, \ldots, n\} .
$$

Example:

$(0,0,2,1,0,4,4,2,8):$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\}
$$

σ_{i} counts the inversions of π whose second entry is at position i.

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.
Example: $\quad(4,3,1,6,2,5) \mapsto(0,, \quad, \quad)$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.
Example: $\quad(4,3,1,6,2,5) \mapsto(0,1, \quad, \quad, \quad)$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.
Example: $\quad(4,3,1,6,2,5) \mapsto(0,1,2, \quad, \quad)$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.
Example: $\quad(4,3,1,6,2,5) \mapsto(0,1,2,0, \quad, \quad)$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.
Example: $\quad(4,3,1,6,2,5) \mapsto(0,1,2,0,3, \quad)$

Inversion sequences (2/2)

\mathbf{I}_{n} is the set of inversion sequences of length $n . \# \mathbf{I}_{n}=n!$.
There is a bijection (Lehmer code) which maps a permutation $\pi \in \mathfrak{S}_{n}$ to the inversion sequence $\sigma \in \mathbf{I}_{n}$ defined by

$$
\sigma_{i}=\#\{j<i \mid \pi(j)>\pi(i)\} \quad \forall i \in\{1, \ldots, n\} .
$$

σ_{i} counts the inversions of π whose second entry is at position i.

$$
\text { Example: } \quad(4,3,1,6,2,5) \mapsto(0,1,2,0,3,1)
$$

Patterns

- Patterns may have repeated letters.
- We only deal with classical patterns.

Example:

The inversion sequence ($0,0,2,1,1,4,2$) contains the pattern 011, and avoids 110 .

$\mathbf{I}_{n}(\tau)$ is the set of τ-avoiding inversion sequences of length n. $\mathbf{I}(\tau)=\bigsqcup_{n} \mathbf{I}_{n}(\tau)$.

Examples:

- $\mathbf{I}(01)=\{(0),(0,0),(0,0,0),(0,0,0,0), \ldots\}$
- $\mathbf{I}(00)=\{(0),(0,1),(0,1,2),(0,1,2,3), \ldots\}$

Context and summary of results

First papers:

- Mansour-Shattuck 2015,
- Corteel-Martinez-Savage-Weselcouch 2016.

Both study inversion sequences avoiding one pattern of length 3.

Subsequent works (by Lin-Yan, Martinez-Savage, Mansour-Yıldırım, among others) left the enumeration open for only one single pattern, and 23 pairs of patterns of length 3 .

We solve the enumeration for all 24 cases with polynomial time algorithms, using recurrence formulas derived from four different constructions of inversion sequences.

Inversion sequences avoiding one pattern of length 2 or 3

Pattern θ	$\# \mathbf{I}_{n}(\theta)$ for $n=1, \ldots, 7$	Comment	OEIS
00 or 01	$1,1,1,1,1,1,1$	Constant	A000012
10	$1,2,5,14,42,132,429$	Catalan numbers	A000108
000	$1,2,5,16,61,272,1385$	Euler zigzag numbers	A000111
001	$1,2,4,8,16,32,64$	2^{n-1}	A000079
010	$1,2,5,15,53,215,979$		A263779
011	$1,2,5,15,52,203,877$	Bell numbers	A000110
012	$1,2,5,13,34,89,233$	Fibonacci(2n - 1)	A001519
021	$1,2,6,22,90,394,1806$	Large Schröder numbers	A006318
100	$1,2,6,23,106,565,3399$		A263780
101 or 110	$1,2,6,23,105,549,3207$	$\# \mathbf{S}_{n}(1234)$	A113227
102	$1,2,6,22,89,381,1694$		A200753
120	$1,2,6,23,103,515,2803$		A263778
201 or 210	$1,2,6,24,118,674,4306$		A263777

(2) Generating trees

(3) Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima
(6) Perspectives

Generating trees

A generating tree construction creates objects of size $n+1$ from objects of size n.

One simple approach: take an inversion sequence $\sigma \in \mathbf{I}_{n}$, and insert an entry $i \in\{0, \ldots, n\}$ at the end to create a sequence $\sigma \cdot i \in \mathbf{I}_{n+1}$.

When avoiding patterns, some values of i are forbidden. The problem comes down to finding efficient ways to count such forbidden values.
We only use this construction for inversion sequences avoiding $\{000,100\}$, since all other pairs it could be applied to were already solved (most of them by Mansour and Yıldırım).
(2) Generating trees
(3) Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima

6 Perspectives

Building a sequence around its first maximum

Building a sequence around its first maximum

Building a sequence around its first maximum

Avoiding the pattern 120

Building a sequence around its first maximum

Avoiding the pattern 120

Building a sequence around its first maximum

Avoiding the pattern 120

Building a sequence around its first maximum

Avoiding the pattern 010

Building a sequence around its first maximum

Avoiding the pattern 010

Building a sequence around its first maximum

Avoiding the pattern 010

Avoiding 010

Let $\mathfrak{a}_{n, m, d}=\#\left\{\sigma \in \mathbf{I}_{n}(010) \mid \max (\sigma)=m, \operatorname{dist}(\sigma)=d\right\}$.
Then for all $n, m, d>0$,

$$
\mathfrak{a}_{n, m, d}=\sum_{p=m+1}^{n} \sum_{i=0}^{d-1} \sum_{j=0}^{m-1} \mathfrak{a}_{p-1, j, i}\binom{m-i}{d-i-1}\left[\begin{array}{c}
n-p+1 \\
n-p-d+i+2
\end{array}\right] .
$$

- p is the position of the first m,
- i is the number of distinct values to the left of p,
- j is the largest value to the left of p.

There are

- $\mathfrak{a}_{p-1, j, i}$ choices for the inversion sequence on the left,
- $\binom{m-i}{d-i-1}$ choices for the set of letters on the right,
- $\left[\begin{array}{c}n-p+1 \\ n-p-d+i+2\end{array}\right]$ choices for the word over those letters.

Splitting at the first max: concluding remarks

- This method yields good results with many patterns.
- But not all of them (e.g. 102).
- This construction is unpredictable: it can solve the enumeration when avoiding 000 or 210 , but not the pair $\{000,210\}$.

We solve the enumeration of inversion sequences avoiding the patterns $010,\{000,120\},\{010,000\},\{010,110\},\{010,120\},\{010,201\},\{010$, $210\},\{011,120\},\{100,120\},\{101,120\},\{110,120\},\{102,201\}$, and $\{120,201\}$ by splitting at the first maximum.
(2) Generating trees
(3) Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima
(6) Perspectives

Shifted inversion sequences

σ is a h-shifted inversion sequence of length n if $0 \leqslant \sigma_{i}<i+h$ for all $i \in\{1, \ldots, n\}$. We denote by \mathbf{I}_{n}^{h} the set of such sequences σ.

Example:

$(1,2,4,0,5,3) \in \mathbf{I}_{6}^{h} \quad \forall h \geqslant 2$.

Elements of \mathbf{I}_{n}^{h} can be seen as (classical) inversion sequences of length $n+h$ whose first h entries were deleted.

In general, splitting an inversion sequence in two results in an inversion sequence on the left side, and a shifted inversion sequence on the right.

Splitting at the first zero

Splitting at the first zero

Avoiding 010 and 102 :

Splitting at the first zero

Avoiding 010 and 102 :

Splitting at the first zero

Avoiding 010 and 102 :

Inversion sequences avoiding $\{010,102\}$

$$
\begin{aligned}
& \text { Let } \mathfrak{a}_{n, h}=\# \mathbf{I}_{n}^{h}(010,102) \\
& \mathfrak{b}_{n, k}=\#\left\{\omega \in\{1, \ldots, k\}^{n}(010,102) \mid \max (\omega)=k\right\} . \text { Then }
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{a}_{n, h} & =\left(\sum_{z=1}^{n} \mathfrak{a}_{n-z, h+z-1}\right)+\mathfrak{a}_{n, h-1}+\left(\sum_{\ell=1}^{n-1} \mathfrak{a}_{\ell, h-1}\right) \\
& +\sum_{r=1}^{n-2} \sum_{m=1}^{h}\left(\mathfrak{b}_{r, m} \cdot \sum_{\ell^{\prime}=0}^{n-r-1}\left(n-r-\ell^{\prime}-\delta_{\ell^{\prime}, 0}\right) \cdot \mathfrak{a}_{\ell^{\prime}, h-m-1}\right)
\end{aligned}
$$

- z is the number of leading zeros,
- ℓ is the left size,
- r is the right size,
- m is the right maximum,
- ℓ^{\prime} is the left size after removing m.

Shifted sequences: concluding remarks

- Similar to the previous method.
- But more complex, since the shift requires an additional parameter.

We solved the enumeration for the pairs of patterns $\{010,102\},\{100$, $102\}$, and $\{102,210\}$ by splitting shifted inversion sequences at the first zero.
(2) Generating trees
(3) Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima
(6) Perspectives

Deleting a term

In general, deleting a term from an inversion sequence does not yield an inversion sequence:

Deleting a maximum always results in an inversion sequence, since all values to its right are lesser or equal.

Avoiding the pair $\{100,110\}(1 / 2)$

- In a 100-avoiding sequence, all values appearing after the first maximum must be distinct, unless they are repetitions of the maximum.
- In a 110-avoiding sequence, any repetitions of the maximum must appear in a single factor at the end.

Example: $(0,0,1,0,4,2,6,5,1,3,4,6,6) \in \mathbf{I}_{13}(100,110)$.

Remark: since any repetitions of the maximum must appear at the end, it is sufficient to enumerate sequences which contain a single maximum.

Avoiding the pair $\{100,110\}(2 / 2)$

Let $\mathfrak{a}_{n, m, p}=\#\left\{\sigma \in \mathbf{I}_{n}(100,110) \mid \sigma_{p}=m \quad\right.$ and $\left.\quad \forall i \neq p, \sigma_{i}<m\right\}$.
If $p \in\{n, n-1\}$, then

$$
\mathfrak{a}_{n, m, p}=\sum_{s=0}^{m-1} \sum_{q=s+1}^{n-1} \sum_{r=1}^{n-q} \mathfrak{a}_{n-r, s, q}
$$

Otherwise,

$$
\mathfrak{a}_{n, m, p}=\sum_{s=1}^{m-1}\left((n-p) \cdot \mathfrak{a}_{n-1, s, p}+\sum_{q=s+1}^{p-1}\left(\mathfrak{a}_{n-1, s, q}+\mathfrak{a}_{n-2, s, q}\right)\right) .
$$

- s is the second maximum of σ,
- q is the position of the first s,
- r is the number of occurrences of s.

Deleting the maxima: concluding remarks

- Can be expressed through generating trees, but requires more parameters.

We solved the enumeration for the pairs $\{000,102\},\{000,201\},\{000$, $210\},\{100,101\},\{100,110\},\{101,210\}$, and $\{110,201\}$ by deleting the maxima.
(2) Generating trees
(3) Splitting at the first maximum

4 Shifted inversion sequences
(5) Deleting maxima

6 Perspectives

Perspectives

We have completed the enumeration of inversion sequences avoiding one or two patterns of length 3 .
This leads to some new questions:

- What is the asymptotic growth of the associated enumeration sequences?
- What is the nature of their generating functions?

Perspectives

We have completed the enumeration of inversion sequences avoiding one or two patterns of length 3 .
This leads to some new questions:

- What is the asymptotic growth of the associated enumeration sequences?
- What is the nature of their generating functions?

Thank you!

