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In case you can’t focus on my talk, here is a combinatorics
problem you can work on instead.

There are nmarried couples, each comprising one woman and
one man. These 2n people are dancing in a circle. Very
concerned with modesty, they arrange themselves so that no
woman is next to a man she is not married to. How many
possible arrangements are there?

Cyclic permutations of an arrangement count as different. If
you like, start with n = 3.



Introduction

If w is a {0, 1} word whose length is at least k, then we let w[k]
denote the word formed by the first k letters of w.
I Example: w = 011010011001 . . . and w[5] = 01101.

The descent word of π ∈ Sn is the word Des(π) = w1 . . . wn−1

such that wi = 1 if i is a descent and wi = 0 if i is an ascent.
I Example: π = 314952687 and Des(π) = 10011001.

The peak word of π ∈ Sn is the word Pk(π) = w1 . . . wn−2 such
that wi = 1 if i+ 1 is a peak of π and wi = 0 otherwise.
I Example: π = 314952687 and Pk(π) = 0010001.

Define dn(w) to be the number of permutations in Sn with
descent word w[n− 1].

Define pn(w) to be the number of permutations in Sn with
peak word w[n− 2].
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Introduction

Define dn(w) to be the number of permutations in Sn with
descent word w[n− 1].

I Example: d6(000100010001 . . .) = ?
= #{π ∈ S6 : Des(π) = 00010}

1235|46 1236|45 1245|36 1346|25 1256|34

1345|26 1346|25 1356|24 1456|23 2345|16

2346|15 2356|14 2456|13 3456|12

d6(000100010001 . . .) = 14.
Define pn(w) to be the number of permutations in Sn with
peak word w[n− 2].

Our goal: understand dn(w) and pn(w) for a given infinite word w,
especially the asymptotics as n→∞.
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Introduction

Suppose w has finitely many 1’s. Now pn(w) is the peak
polynomial for w, a polynomial in n, well studied (Billey Burdzy

Sagan 2013, Billey Fahrbach Talmage 2016, Diaz-Lopez Harris Insko Omar 2017, etc.).
Similarly, dn(w) is the descent polynomial for w, also a
polynomial in n, somewhat less studied (Kantarcı Oǧuz 2018,

Diaz-Lopez Harris Insko Omar Sagan 2019).

When w is allowed to have infinitely many 0’s and infinitely
many 1’s, interesting things can happen. The numbers must be
greater than polynomial. There is some prior work (see the
abstract), including my thesis research (2018).



I. Introduction (done)
II. The growth rate of a descent word or peak word

III. Other results and further questions
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II. The growth rate of a descent word or peak word
I dn(w) is maximized by w = 010101 . . . and w = 101010 . . .

(Viennot 1979).
I dn(010101 . . .) counts the alternating permutations and

equals the Euler number, En.

I En ∼
4

π

(
2

π

)n

n!.

I If w is chosen uniformly at random, then

E[dn(w)] = 2

(
1

2

)n

n!.

These suggest that, in many cases, dn(w) is asymptotically of
the form cnpLnn!. We focus on the number L. Define

grdn(w) = lim
n→∞

(
dn(w)

n!

)1/n

.

I 0 6 grdn(w) 6 2/π ≈ 0.637.
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II. The growth rate of a descent word or peak word

I pn(w) is maximized by w = 001001001 . . ., with slight
adjustments when n ≡ 1 (mod 3). If wmaximizes pn(w),
then pn(w) = c 3−n/3n!, where c is determined by n
mod 3. (Kasraoui 2012, Billey Fahrbach Talmage 2016).

I Just as before, we can write

grpn(w) = lim
n→∞

(
pn(w)

n!

)1/n

.

I 0 6 grpn(w) 6 1/
3
√
3 ≈ 0.693.

Summary: The number of permutations with descent wordw or peak
word w is at most an exponentially decaying fraction of the total
number of permutations, and the base of the exponential decay is
6 2/π for the descent word and 6 1/

3
√
3 for the peak word.
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II. The growth rate of a descent word or peak word

We say two infinite words u = u1u2 . . . and v = v1v2 . . . are
equicaudal if uaua+1 . . . = vbvb+1 . . . for some a and b— that
is, u and v have the same tail, or the same coda.

I Example: 0101001100110011 . . .
and 000100001100110011 . . . are equicaudal.

Theorem (Omar & T. 2023+): If u and v are equicaudal, then
grdn(u) = grdn(v).

Proof idea: Shifting u by one position multiplies dn(u) by a
factor between 1/n and n. By induction, dn(v)/dn(u) is
bounded above and below by rational functions of n. �

I This extends the fact that dn(w) is a polynomial of nwhen
w has finitely many 1’s, since in this case w and 000 . . . are
equicaudal.
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II. The growth rate of a descent word or peak word

Theorem (Omar & T. 2023+): For every L ∈ [0, 2/π], there exists
an infinite word w such that grdn(w) = L.

Proof idea: We construct w letter by letter, by looking at the

value of gn =
dn(w)

n!
L−n. Append 0’s until gn is a bit lower

than 1; next, append 10’s until gn is a bit higher than 1; repeat.

000001010100000000101010101000000000000 . . .

We know that each phase of adding 0’s will eventually end,
because otherwise wwould be equicaudal to 000 . . . and thus
gn would go to 0. Similarly, we know that each phase of
adding 10’s will eventually end, because otherwise wwould be
equicaudal to 010101 . . . and thus gn would go to infinity. �



II. The growth rate of a descent word or peak word

Theorem (Omar & T. 2023+): For every L ∈
[
0, 1/

3
√
3
]
, there

exists an infinite word w such that grpn(w) = L.

We have not yet tried to prove this using a similar technique as
for dn(w), but it will probably work. Our proof goes a different
route.
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III. Other results and further questions

I Recall that every L ∈ [0, 2/π] is a growth rate of a descent
word. This implies that the set{(

dn(w)

n!

)1/n

: w a binary word, n > 0

}

is dense in [0, 2/π].
I But there is a more direct way to see this:

Theorem (Omar & T. 2023+): For every L ∈ [0, 2/π] and every
ε > 0, there exist a, b > 0 such that∣∣∣∣∣

(
dn(0

a(10)b)

n!

)1/n

− L

∣∣∣∣∣ < ε.
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ε > 0, there exist a, b > 0 such that∣∣∣∣∣

(
dn(0

a(10)b)

n!

)1/n

− L

∣∣∣∣∣ < ε.

That is a corollary of the following:

Theorem (Omar & T. 2023+): For every L ∈ [0, 2/π], there exists
γ > 0 such that

grdn(0a(10)b) = L,

where a =

⌊
γn

log(n)

⌋
[ + 1] and b = n−1−a

2 .

I The proof is a fun application of Stirling’s approximation.
I Differs from our result that every L is a growth rate of some

infinite word w, because 0a(10)b is not of the form
w[n− 1] for one infinite word w— both a and b grow.
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III. Other results and further questions

Similar results hold for peak words, using words of the form
0a(100)b.



III. Other results and further questions

Now suppose w is chosen uniformly at random.

Theorem (Elizalde & T. 2019): lim
n→∞ dn(w)

(n/2)bn/2c!
=∞ almost

surely.

Conjecture (Omar & T. 2023+): grdn(w) > 0 almost surely.
I A stronger statement would be that grdn(w) > 0 for every
wwith infinitely many 0’s and infinitely many 1’s, but that
is false: we can construct w to have sparse enough 0’s that
grdn(w) = 0.

Conjecture (me while I was preparing this talk):
grdn(w) = 1/2 almost surely.
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