Dyck paths and inversion tables
 Michael Wallner
 Institute of Discrete Mathematics and Geometry, TU Wien, Austria
 TU
 WIEN
 TECHNISCHE UNIVERSITÄT WIEN

Inversion table
Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ be a permutation. A pair $\left(\pi_{j}, \pi_{k}\right)$ is called an inversion if $j<k$ and $\pi_{j}>\pi_{k}$. The (right-)inversion table ($r_{1}, r_{2}, \ldots, r_{n}$) of π is

$$
r_{i}:=\mid\left\{\pi_{j}:\left(i, \pi_{j}\right) \text { is an inversion }\right\} \mid .
$$

Observations:

- $0 \leq r_{i} \leq i-1$
- $\left(r_{i}\right)_{i=1}^{n}$ uniquely characterizes π; see [4, Section 5.1.1]

Permutation π	Inversion table $\left(r_{i}\right)_{i=1}^{n}$
12345	$(0,0,0,0,0)$
54321	$(0,1,2,3,4)$
25314	$(0,1,1,0,3)$

Key property: r_{i} mutually independent!

Corollary: There are n ! permutations of n.
\Rightarrow Visualize inversion tables as boxed staircase paths:

- Staircase path $(E N)^{n}$
- One unit box between path and $y=-1$ is marked
- Bijection: Label lowest row 0 , next 1 , etc. If box k is marked in column i then $r_{i}=k$.

Idea: Use other paths

- Path acts as an upper bound for the r_{i} 's
- Staircase path gives $r_{i} \leq i-1$
-What happens for other Dyck paths?
A Dyck path D of length $2 n$ is a path from $(0,0)$ to (n, n) that takes steps $E=(1,0)$ and $N=(0,1)$, always staying weakly below the diagonal $y=x$. Let $y_{i}(D)$ be the ordinate of the i th E step in D.

Definition (Boxed Dyck paths and Dyck inversion tables)

- A boxed Dyck path B is a Dyck path D in which the i th E step is decorated by a number from $\left\{0, \ldots, y_{i}(D)\right\}$.
- A Dyck inversion table ($r_{1}, r_{2}, \ldots, r_{n}$) for a Dyck path D is a sequence of nonnegative integers such that $0 \leq r_{i} \leq y_{i}(D)$.

Observations:

- Each boxed Dyck path is associated with a permutation
- The Dyck path imposes restrictions on the associated permutation

For example, in the path EENEENNNEN shown below we have:

$$
r_{1} \leq 0, \quad r_{2} \leq 0, \quad r_{3} \leq 1, \quad r_{4} \leq 1, \quad r_{5} \leq 4
$$

Figure: Three different boxed Dyck paths associated with the Dyck path EENEENNNEN.

Bijections

- Boxed Dyck paths of length $2 n$ are in bijection with a class of directed acyclic graphs called relaxed binary trees [1].
- Inversion tables are in bijection with many objects [3]: regressive mappings, increasing Cayley trees, increasing plane binary trees,
- Dyck inversion tables allow restricted classes:
- Fixed Dyck path (e.g., in a strip)
- Restricted markers (e.g., weakly increasing; see Theorem below)
- Avoiding marker patterns (connections with phylogenetic trees and automata [2]).

Figure: Four bijectively related combinatorial objects: (1) Boxed staircase paths, (2) relaxed (plane) binary chains, (3) increasing (non-plane) Cayley trees, (4) increasing (plane) binary trees.

Enumeration

The number b_{n} of boxed Dyck paths of length $2 n$ satisfies

$$
b_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right)
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\mathrm{Ai}(x)$ (solution of $\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)$ such that $\left.\lim _{n \rightarrow \infty} \operatorname{Ai}(x)=0\right)$; see [1, Theorem 1.1].
Discussion:

- Catalan numbers $\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n^{3}}}$ count Dyck paths of length $2 n$
- Base of stretched exponential is quite small: $e^{3 a_{1} n^{1 / 3}} \approx 0.0008989^{n^{1 / 3}}$

Theorem

The probability that a random Dyck path of length $2 n$ may be decorated by an independent random permutation of n, both drawn uniformly at random, is

$$
\frac{b_{n}}{n!\text { Cat }_{n}}=\Theta\left(e^{3 \alpha_{1} n^{1 / 3}} n^{5 / 2}\right) .
$$

Theorem

The number of boxed Dyck paths with weakly increasing markers is equal to

$$
\mathrm{Cat}_{n} \mathrm{Cat}_{n+2}-\mathrm{Cat}_{n+1}^{2}=\frac{24}{\pi} \frac{16^{n}}{n^{5}}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right),
$$

which is given by OEIS A005700. This sequence is D-finite but not algebraic.

Outlook

- Other variants of paths ending at (n, k):
- No space constraints: Stirling numbers $S(n+k, k)$ of the second kind (set partitions of $n+k$ into k sets)
- Markers below E and left of N : Eulerian numbers $E(n, k)$ (perm. of n with k ascents)
- Other bijections: OEIS A005700 enumerates many objects like Gouyou-Beauchamps excursions in $\mathbb{Z}_{>0}^{2}$
- Other statistics: major index related to pos. of increasing markers $\sum_{r_{i}<r_{i+1}} i$

References

[1] Andrew Elvey Price, Wenjie Fang, and Michael Wallner.
Compacted binary trees admit a stretched exponential.
J. Combin. Theory Ser. A, 177:105306, 40, 2021.
[2] Andrew Elvey Price, Wenjie Fang, and Michael Wallner. Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language. In AofA 2020, volume 159 of LIPIcs, pages 11:1-11:13, 2020.
[3] Philippe Flajolet and Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2009
[4] Donald E. Knuth.
The Art of Computer Programming. Vol. 3. Sorting and Searching
Addison-Wesley, Reading, MA, 1998.

