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Overview of the talk

▶ Generating trees and kernel method

▶ Pattern-avoiding inversion sequences

▶ Some new enumerative results for inversion sequences
avoiding 021 and a five-letter pattern.



Generating trees for combinatorial classes

Any set C of discrete objects with a notion of a size such that for
each n there are finitely many objects of size n is called a
combinatorial class.

A generating tree for C is a rooted, labeled, ordered tree whose
vertices are the objects of C with the following properties:

(i) each object of C appears exactly once in the tree;

(ii) objects of size n appears at the level n in the tree;

(iii) each object’s children are obtained by a set of succession rules
which determines the number of children and their labels.
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Examples

▶ Fibonacci Tree:

Root: (1),

Rules: (1)⇝ (2)

(2)⇝ (1)(2)

▶ Catalan Tree:

Root: (1),

Rules: (m)⇝ (2)(3) · · · (m + 1)



From generating trees to generating functions

Fibonacci Tree:

Root: (1),

Rules: (1)⇝ (2)

(2)⇝ (1)(2)

Let an = the number of vertices at the level n, n ≥ 1. The root is
at the level 1.

We want to compute the generating function A(x) =
∑∞

n=1 anx
n.

Let Ai (x) denote the generating function corresponding to the
(sub)-tree with root label (i). Then, we get

A1(x) = x + xA2(x)

A2(x) = x + xA1(x) + xA2(x)

Solving these equations yields A1(x) =
x

1−x−x2
.

The number of vertices at each level are 1, 1, 2, 3, 5, 8, . . .
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Catalan Tree

Root: (1),

Rules: (m)⇝ (2)(3) · · · (m + 1)

Am(x) = x + x [A2(x) + A3(x) + · · ·+ Am+1(x)] for any m ≥ 1.

Hence
Am+1(x)− Am(x) = xAm+2(x).

Let A(x , u) =
∑∞

m=1 Am(x)u
m−1.

We want to determine

A(x , 0) = A1(x).
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Kernel Method

Multiplying Am+1(x)− Am(x) = xAm+2(x) by um−1 and summing
over m ≥ 1, we get

1

u
(A(x , u)− A1(x))− A(x , u) =

x

u2
(A(x , u)− A1(x)− uA2(x))

(
1

u
− 1− x

u2
)A(x , u) = − x

u2
A1(x) +

1

u

If we choose u = 1−
√
1−4x
2 , then we get A1(x) =

1−
√
1−4x
2x , the

generating function of the Catalan numbers.

The number of vertices at each level are 1, 1, 2, 5, 14, 42, . . .
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Inversion Sequences

An inversion sequence of length n is an integer sequence
e = e1 · · · en such that 0 ≤ ei < i for each 0 ≤ i ≤ n.

We use In to denote the set of inversion sequences of length n.

I2 = {00, 01}
I3 = {000, 001, 010, 011, 002, 012}

There is a bijection between In and Sn, the set of permutations of
length n.
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Patterns: words over the alphabet [k] := {0, 1, · · · , k − 1}.

A pattern τ is a word of length k over the alphabet [k].

There are basically thirteen patterns of length three up to order
isomorphism.

P3 = {000, 001, 010, 100, 011, 101, 110, 021, 012, 102, 120, 201, 210}

An inversion sequence e ∈ In contains the pattern τ if there is a
subsequence of length k in e that is order isomorphic to τ ;
otherwise, e avoids the pattern τ .

In(τ) denotes the set of all τ -avoiding inversion sequences of
length n.

For a given set of patterns B, we set In(B) = ∩τ∈B In(τ).
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Examples for In(τ)

e = 01102321 ∈ I8 avoids the pattern 0000 because there is no
subsequence eiejekel of length four in e with i < j < k < l and
ei = ej = ek = el .

On the other hand, e = 01102321 contains the patterns

▶ 010 because it has subsequences −1−−− 3− 1 or
−−−− 232− order isomorphic to 010,

▶ 000 because it has subsequence −11−−−−1 order
isomorphic to 000.
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Pattern-avoiding inversion sequences

They provide a unifying interpretation that relates a vast array of
combinatorial structures.

- Fibonacci numbers

- Catalan numbers

- Schröder numbers

- Euler up/down numbers

- Bell numbers

- ....
appear as enumerating sequences for pattern-restricted inversion
sequences.



Avoiding a single pattern of length three
Mansour-Shattuck(2015) and Corteel et.al. (2015)

There are basically thirteen patterns of length three up to order
isomorphism

P3 = {000, 001, 010, 100, 011, 101, 110, 021, 012, 102, 120, 201, 210}

▶ |In(012)| = F2n−1, odd Fibonacci numbers.
F0 = 0,F1 = 1,Fn = Fn−1 + Fn−2 for n ≥ 2.

▶ |In(021)| = rn−1, rn is the nth large Schröder numbers.
rn is the number of paths in the first quadrant from (0, 0) to
(2n, 0) with steps (1, 1), (1,−1) and (2, 0).

▶ |In(000)| = En+1 is the Euler up/down numbers.
En is the number of permutations of length n such that
σ1 < σ2 > σ3 < · · · .
tan x + sec x =

∑∞
n=0 En

xn

n!



Avoiding a single pattern of length three

▶ |In(001)| = 2n−1

▶ |In(011)| = Bn, the nth Bell number.
Bn is the number of ways to partition an n−element set into
non-empty subsets called blocks.

▶ |In(101)| = |In(110)| = powered Catalan numbers.

▶ |In(201)| = |In(210)| corresponds to A263777 in OEIS.

▶ |In(102)|, |In(010)|, |In(100)|, |In(120)| corresponds to
A200753, A263779, A263780, A263778, respectively.

The case 010 is solved by B. Testart(2022).



Avoiding pair of patterns of length three
Yan-Lin (2020)

Consider inversion sequences avoiding two element subsets of

P3 = {000, 001, 010, 100, 011, 101, 110, 021, 012, 102, 120, 201, 210}

There are 78 pairs but Yan and Lin (2021) showed that there 48
Wilf classes and enumerated 17 of them.

- |In(001, 210)| =
(n
3

)
+ n

- For p ∈ {(012, 201), (012, 210)}, |In(p)| = 2n+1 −
(n+1

3

)
− 2n− 1

- For p ∈ {(012, 021), (110, 012)}, |In(p)| = 2n − n



Enumeration of In(B)
algorithm+generating tree+kernel method → enumeration

Generating function R(x) =
∑

n≥1 |In(B)|xn.

We have three main steps:

▶ determine the succession rules for the corresponding
generating tree.

▶ determine the equations satisfied by the generating functions
from the tree rules.

▶ solve the equations and determine the enumerating sequence
for In(B).



Tree representation of I(B) = ∪∞
n=1In(B)

We will construct a pattern-avoidance tree T (B) corresponding to
the class I(B) as follows:

▶ the root is 0 and stays at level 1.

▶ the nth level of the tree consist exactly the elements of In(B).

▶ the children of e1e2 · · · en−1 ∈ In−1(B) are obtained from the
set {e1e2 · · · en−1en|en = 0, 1, . . . , n − 1} by obeying the
pattern avoidance restrictions of B.

▶ we arrange the nodes from the left to the right so that
e1e2 · · · en−1i appears on the left of e1e2 · · · en−1j if i < j .



Tree representation of In(000, 021)

First four levels of T (000, 021)

0

00

001

0011 0012 0013

002

0022 0023

01

010

0101 0102 0103

011

0110 0112 0113

012

0120 0122 0123



An equivalence relation on T (B)

Let T (B; e) denote the subtree in T (B) which has the root e.

We define an equivalence relation on T (B) as follows: let
e, e ′ ∈ T (B)

e ∼ e ′ if and only if T (B; e) ∼= T (B; e ′)

Lemma
Let t be the length of the longest pattern in B.

T (B; e) ∼= T (B; e ′) if and only if T 2t(B; e) ∼= T 2t(B; e ′)
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a simple example: enumeration of In(000, 001, 012)

0

00 01

010 011

0110

0

00 01

00 011

00

The generating tree succession rules are given by

Root: 0,

Rules: 0⇝ 00, 01

01⇝ 00, 011

011⇝ 00.



a simple example: enumeration of In(000, 001, 012)

Let R(x) =
∑

n≥1 |In(000, 001, 012)|xn.

R(x) = x + xA00(x) + xA01(x),

A01(x) = x + xA00(x) + xA011(x),

A011(x) = x + xA00(x),

A00(x) = x .

Then R(x) = x4 + 2x3 + 2x2 + x .



the case B = {000, 021}

Based on the second tree, we try to figure out the succession rules
of the generating tree for the class I(B).

0

00

001

0011 0012 0013

002

0022 0023

01

010

0101 0102 0103

011

0110 0112 0113

012

0120 0122 0123

0

00

001

0011 001 0

0

00 01

01

001

0011 001 0

011

0011 0112 01

01

001 011 01



Succession rules for the generating tree of In(000, 021)

We define r0 = 0, b0 = 0, and for m ≥ 1,

am = 0011 · · ·mm

bm = 0011 · · · (m − 1)(m − 1)m

cm = 01122 · · ·mm

dm = 01122 · · · (m − 1)(m − 1)m.

The generating tree T (000, 021) is given by

Root: r0,

Rules: r0 ⇝ a0d1,

am ⇝ bm+1bm · · · b0,
bm ⇝ ambmbm−1 · · · b0,
cm ⇝ amdm+1dm · · · d1,
dm ⇝ bmcmdmdm−1 · · · d1.



Equations for the generating functions

Let R(x) =
∑

n≥1 |In(000, 021)|xn.

R(x) = x + xA0(x) + xD1(x),

Am(x) = x + x
m+1∑
j=0

Bj(x),

Bm(x) = x + xAm(x) + x
m∑
j=0

Bj(x),

Cm(x) = x + xAm(x) + x
m+1∑
j=1

Dj(x),

Dm(x) = x + xBm(x) + xCm(x) + x
m∑
j=1

Dj(x).



Bivariate generating functions

We define

A(x , u) =
∑
m≥0

Am(x)u
m,B(x , u) =

∑
m≥0

Bm(x)u
m

C (x , u) =
∑
m≥1

Cm(x)u
m−1,D(x , u) =

∑
m≥1

Dm(x)u
m−1.

Hence

R(x) = x + xA(x , 0) + xD(x , 0),

A(x , u) =
x

1− u
+

x

u
(B(x , u)− B(x , 0)) +

x

1− u
B(x , u),

B(x , u) =
x

1− u
+ xA(x , u) +

x

1− u
B(x , u),

C (x , u) =
x

1− u
+

x

u
(A(x , u) + D(x , u)− A(x , 0)− D(x , 0)) +

x

1− u
D(x , u)

D(x , u) =
x

1− u
+

x

u
(B(x , u)− B(x , 0)) + xC (x , u) +

x

1− u
D(x , u).



Kernel Method

From the second and third equations, we get

(1− x)u − x2 − u2

u(1− u − x)
A(x , u) = − x2

u(1− x)
A(x , 0)+

x

(1− u − x)(1− x)
.

By choosing u = x2M(x), where M(x) = 1−x−
√
1−2x−3x2

2x2
is the

generating function for the Motzkin numbers, we obtain

A(x , 0) =
xM(x)

1− x − x2M(x)
= xM2(x),

and then

A(x , u) =
xM(x)(x2M(x)− u)

u2 + (x − 1)u + x2

and

B(x , u) =
xM(x)((u + x)x2M(x)− u + x2)

u2 + u(x − 1) + x2
.
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.



Enumeration of In(000, 021)

The generating function R(x) =
∑

n≥1 |In(000, 021)|xn is given by

R(x) =
3x3 + x2 − 3x + 1

2x2
√
(1 + x)(1− 3x)

− (1− x)2

2x2
.

Hence

|In(000, 021)| =
1

2
(3an−1 + an − 3an+1 + an+2)

for all n ≥ 1 where an =
∑n

k=0(−1)n−k
(n
k

)(2k
k

)
.



Enumeration of In(021, 00011)

the vertex labeling symbols:
am = 0m , bm = 01m , cm = 001m , dm = 0212 . . .m2, em = 0212 . . . (m − 1)2m, fm = 01222 . . .m2, and

gm = 01222..(m − 1)2m, for all m ≥ 1; and ae = e for an inversion sequence e.

the generating tree succession rules:

a0 ⇝ a00g1, a00 ⇝ a3e1a002,

a002 ⇝ a3a0022a002, a0022 ⇝ a4a00222e1a002,

a00222 ⇝ a5c3a3a0002a0003, am ⇝ am+1 · · · a3a0002a0003,
bm ⇝ bm+1cmam · · · a3a0002a0003, m ≥ 3 dm ⇝ am+4cm+2em+1 · · · e1a002, m ≥ 1

cm ⇝ am+3cm+1am+1 · · · a3a0002a0003, fm ⇝ dmbm+2gm+1 · · · g1, m ≥ 1

em ⇝ am+3dmem · · · e1a002, gm ⇝ emfmgm · · · g1, m ≥ 1

Then we have

F(021,00011)(x) =
(1− x − 3x2)

√
1− 4x − 9x3 − 3x2 + 4x − 1

2x3
√
(1 + x)(1− 3x)

− (2− 2x + 3x2)
√
1− 4x + 2x3 − 8x2 + 7x − 2

2x3
.



Enumeration of In(021, 00012)

the vertex labeling symbols:
am = 0m , bm = 01m , cm = 001m , dm = 0212 . . .m2, em = 0212 . . . (m − 1)2m, fm = 01222 . . .m2, and

gm = 01222 . . . (m − 1)2m, for all m ≥ 1; and ae = e for an inversion sequence e.

the generating tree succession rules:

a0 ⇝ a00g1, a00 ⇝ a3e1a002,

a002 ⇝ a3a0022a002, a0022 ⇝ a4e1a002a00222,

a00222 ⇝ a5c3a
3
0001, a0001 ⇝ a20001,

am ⇝ am+1a
m
0001, bm ⇝ bm+1cmam0001,

cm ⇝ am+3cm+1a
m+1
0001 , dm ⇝ am+4cm+2em+1 · · · e1a002,

em ⇝ am+3dmem · · · e1a002, fm ⇝ dmbm+2gm+1 · · · g1,
gm ⇝ emfmgm · · · g1.

Then we have

F(021,00012)(x) =
4x9 − 8x8 − 8x7 + 10x6 − 18x5 + 6x4 + 8x3 − 9x2 + 4x − 1

2x2(1 + x)2(1− x)4(1− 2x)

+
18x7 − 24x6 + 24x5 + 8x4 − 26x3 + 17x2 − 6x + 1

2x2(1 + x)(1− x)4(1− 2x)
√
(1 + x)(1− 3x)

.



Enumeration of In(021, τ)
Mansour-Y. (2022)

We determined the generating trees and generating functions for
the inversion sequences avoiding 021 and another pattern of length
4 or 5.

|In({021, 0001})| =
(4n − 25)(−1)n

32
−

n(n + 1) − 1

4
+

1

32
3n+4

+
n+1∑
j=0

(
(4j − 39)(−1)j

32
+

1

4
j2 − j +

1

2
−

1

32
3j+2

)
Mn+1−j ,

|In({021, 0010})| =
(
2n

n

)
,

|In({021, 0011})| = Cn+2 + 1 −
n+1∑
j=0

Cj ,

|In({021, 0012})| = 2n+3 −
(n + 1)(2n2 + 7n + 24)

6
− 3,

|In({021, 0100})| = |In({021, 0110})| =
n2 + n + 6

8(2n + 3)(2n + 5)

(
2n + 6

n + 3

)
,

|In({021, 0101})| = |In({021, 0111})| =
n+1∑
i=1

1

i

(
n

i − 1

)(
2n + 2 − i

i − 1

)



|In({021, 0102})| = 2n+1 −
(n + 1)(n2 + 2n + 12)

6
− 1 +

n+1∑
j=0

Cj

|In({021, 0112})| = Cn+1 − 2n+1 + 1 +
n∑

j=0

2n−jCj ,

|In({021, 0120})| = |In({021, 0122})| =
1

2

(
2n + 2

n + 1

)
−

1

2

n∑
j=1

(
2j

j

)
,

|In({021, 0123})| = 2n−1(n2 − 3n + 4) +
n(n + 1)

2
− 1,

|In({021, 1000})| = |In({021, 1100})| =
n5 + 2n4 + 23n3 + 46n2 + 120n + 48

2(n + 1)(n + 2)(n + 3)(n + 4)

(
2n

n

)
,

|In({021, 1001})| = |In({021, 1011})| = |In({021, 1101})| =
1

n + 1

⌊ n
2
⌋∑

j=0

(
n + 1

j

)(
2n + 2

n − 2j

)
,

|In({021, 1002})| =
1

2

(
2n + 6

n + 3

)
−

5

2

(
2n + 4

n + 2

)
+

5

2

(
2n + 2

n + 1

)
+

1

2

n∑
j=0

(
2j

j

)

+ 2n+1 −
1

24
(n4 + 2n3 + 11n2 + 34n + 36),

|In({021, 1020})| = |In({021, 1022})|

=

(
2n + 8

n + 4

)
−

13

2

(
2n + 6

n + 3

)
+

21

2

(
2n + 3

n + 2

)
−

1

2

n+1∑
j=0

(
2j

j

)
−

1

2
,



|In({021, 1023})| =
n+1∑
j=0

(2j+1 − j − 1)Cn+1−j +
n(3n3 + 22n2 + 129n + 398)

24
+ 2n−1(n2 − 3n − 52) + 24,

|In({021, 1102})| =
1

2

(
2n + 6

n + 3

)
−

21

4

(
2n + 4

n + 2

)
+

(
2n + 2

n + 1

)
+

(n + 1)2

2
− 2n +

1

2

n+3∑
j=1

(2j−2 − 3j + 8)

(
2n + 6 − 2j

n + 3 − j

)

|In({021, 1120})| = 4n −
n

2(2n + 3)

(
2n + 4

n + 2

)
,

|In({021, 1200})| = |In({021, 1220})| =
n + 4

2(n + 2)

(
2n + 2

n + 1

)
+

n−1∑
j=0

(2j + 1)

(
2j

j

)
− 4n,

|In({021, 1203})| =
n + 1

24
(n3 + n2 − 2 ∗ n − 108) + 2n−1(n2 − 11n + 28) −

19

2

+
1

2

(
2n + 2

n + 1

)
−

1

2

n+1∑
j=2

(j − 1)

(
2n + 2 − 2j

n + 1 − j

)
,

|In({021, 1220})| =
n + 4

n + 2

(
2n + 1

n

)
− 4n +

n∑
j=0

(2j + 1)

(
2j

j

)
,

|In({021, 1230})| =
1

3
(2 · 4n + 1) +

n∑
j=1

(
j

2
− 2j−1)

(
2n + 2 − 2j

n + 1 − j

)
.



Thank you!
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succession rules

Consider the children of a node labeled by am = 0011 · · ·mm:

amj = 0011 · · ·mmj where j = m + 1,m + 2, . . . , 2m + 2

otherwise, amj does not avoid B.

▶ am(m + 1) = 0011 · · ·mm(m + 1) = bm+1;

▶ for other j values, am(m + j) = 0011 · · ·mm(m + j);
note that T (B; am(m + j)) ∼= T (B; bm+2−j) by removing the
letters m + 2− j ,m + 3− j , . . . ,m and decreasing each letter
greater than m by 2j − 1.

▶ therefore the children of the node with label am are exactly
the nodes labelled by bm+1, bm, . . . , b0, that is,
am ⇝ bm+1bm · · · b0.
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