Generating trees and pattern-avoiding inversion sequences

Gökhan Yıldırım
Bilkent University

Permutation Patterns 2023

$$
\text { July 3-7, } 2023
$$

based on joint work with Toufik Mansour

Overview of the talk

- Generating trees and kernel method
- Pattern-avoiding inversion sequences
- Some new enumerative results for inversion sequences avoiding 021 and a five-letter pattern.

Generating trees for combinatorial classes

Any set \mathcal{C} of discrete objects with a notion of a size such that for each n there are finitely many objects of size n is called a combinatorial class.

Generating trees for combinatorial classes

Any set \mathcal{C} of discrete objects with a notion of a size such that for each n there are finitely many objects of size n is called a combinatorial class.
A generating tree for \mathcal{C} is a rooted, labeled, ordered tree whose vertices are the objects of \mathcal{C} with the following properties:
(i) each object of \mathcal{C} appears exactly once in the tree;
(ii) objects of size n appears at the level n in the tree;
(iii) each object's children are obtained by a set of succession rules which determines the number of children and their labels.

Examples

- Fibonacci Tree:

$$
\begin{aligned}
\text { Root: } & (1), \\
\text { Rules: } & (1) \rightsquigarrow(2) \\
& (2) \rightsquigarrow(1)(2)
\end{aligned}
$$

- Catalan Tree:

Root: (1),
Rules: $(m) \rightsquigarrow(2)(3) \cdots(m+1)$

From generating trees to generating functions

Fibonacci Tree:

Root: (1),
Rules: $(1) \rightsquigarrow(2)$
$(2) \rightsquigarrow(1)(2)$

From generating trees to generating functions

Fibonacci Tree:

$$
\begin{aligned}
\text { Root: } & (1), \\
\text { Rules: } & (1) \rightsquigarrow(2) \\
& (2) \rightsquigarrow(1)(2)
\end{aligned}
$$

Let $a_{n}=$ the number of vertices at the level $n, n \geq 1$. The root is at the level 1 .

From generating trees to generating functions

Fibonacci Tree:

$$
\begin{aligned}
\text { Root: } & (1), \\
\text { Rules: } & (1) \rightsquigarrow(2) \\
& (2) \rightsquigarrow(1)(2)
\end{aligned}
$$

Let $a_{n}=$ the number of vertices at the level $n, n \geq 1$. The root is at the level 1 .

We want to compute the generating function $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.

From generating trees to generating functions

Fibonacci Tree:

$$
\begin{aligned}
\text { Root: } & (1), \\
\text { Rules: } & (1) \rightsquigarrow(2) \\
& (2) \rightsquigarrow(1)(2)
\end{aligned}
$$

Let $a_{n}=$ the number of vertices at the level $n, n \geq 1$. The root is at the level 1 .

We want to compute the generating function $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.
Let $A_{i}(x)$ denote the generating function corresponding to the (sub)-tree with root label (i). Then, we get

$$
\begin{aligned}
& A_{1}(x)=x+x A_{2}(x) \\
& A_{2}(x)=x+x A_{1}(x)+x A_{2}(x)
\end{aligned}
$$

From generating trees to generating functions

Fibonacci Tree:

$$
\begin{aligned}
\text { Root: } & (1), \\
\text { Rules: } & (1) \rightsquigarrow(2) \\
& (2) \rightsquigarrow(1)(2)
\end{aligned}
$$

Let $a_{n}=$ the number of vertices at the level $n, n \geq 1$. The root is at the level 1 .

We want to compute the generating function $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.
Let $A_{i}(x)$ denote the generating function corresponding to the (sub)-tree with root label (i). Then, we get

$$
\begin{aligned}
& A_{1}(x)=x+x A_{2}(x) \\
& A_{2}(x)=x+x A_{1}(x)+x A_{2}(x)
\end{aligned}
$$

Solving these equations yields $A_{1}(x)=\frac{x}{1-x-x^{2}}$.
The number of vertices at each level are $1,1,2,3,5,8, \ldots$

Catalan Tree

Root: (1),
Rules: $(m) \rightsquigarrow(2)(3) \cdots(m+1)$

Catalan Tree

Root: (1),
Rules: $(m) \rightsquigarrow(2)(3) \cdots(m+1)$
$A_{m}(x)=x+x\left[A_{2}(x)+A_{3}(x)+\cdots+A_{m+1}(x)\right] \quad$ for any $m \geq 1$.

Catalan Tree

Root: (1),
Rules: $(m) \rightsquigarrow(2)(3) \cdots(m+1)$
$A_{m}(x)=x+x\left[A_{2}(x)+A_{3}(x)+\cdots+A_{m+1}(x)\right] \quad$ for any $m \geq 1$.
Hence

$$
A_{m+1}(x)-A_{m}(x)=x A_{m+2}(x)
$$

Let $A(x, u)=\sum_{m=1}^{\infty} A_{m}(x) u^{m-1}$.
We want to determine

$$
A(x, 0)=A_{1}(x)
$$

Kernel Method

Multiplying $A_{m+1}(x)-A_{m}(x)=x A_{m+2}(x)$ by u^{m-1} and summing over $m \geq 1$, we get

$$
\begin{gathered}
\frac{1}{u}\left(A(x, u)-A_{1}(x)\right)-A(x, u)=\frac{x}{u^{2}}\left(A(x, u)-A_{1}(x)-u A_{2}(x)\right) \\
\left(\frac{1}{u}-1-\frac{x}{u^{2}}\right) A(x, u)=-\frac{x}{u^{2}} A_{1}(x)+\frac{1}{u}
\end{gathered}
$$

Kernel Method

Multiplying $A_{m+1}(x)-A_{m}(x)=x A_{m+2}(x)$ by u^{m-1} and summing over $m \geq 1$, we get

$$
\begin{gathered}
\frac{1}{u}\left(A(x, u)-A_{1}(x)\right)-A(x, u)=\frac{x}{u^{2}}\left(A(x, u)-A_{1}(x)-u A_{2}(x)\right) \\
\left(\frac{1}{u}-1-\frac{x}{u^{2}}\right) A(x, u)=-\frac{x}{u^{2}} A_{1}(x)+\frac{1}{u}
\end{gathered}
$$

If we choose $u=\frac{1-\sqrt{1-4 x}}{2}$, then we get $A_{1}(x)=\frac{1-\sqrt{1-4 x}}{2 x}$, the generating function of the Catalan numbers.

The number of vertices at each level are $1,1,2,5,14,42, \ldots$

Inversion Sequences

An inversion sequence of length n is an integer sequence $e=e_{1} \cdots e_{n}$ such that $0 \leq e_{i}<i$ for each $0 \leq i \leq n$.

Inversion Sequences

An inversion sequence of length n is an integer sequence $e=e_{1} \cdots e_{n}$ such that $0 \leq e_{i}<i$ for each $0 \leq i \leq n$.

We use I_{n} to denote the set of inversion sequences of length n.

$$
\begin{aligned}
& I_{2}=\{00,01\} \\
& I_{3}=\{000,001,010,011,002,012\}
\end{aligned}
$$

There is a bijection between I_{n} and S_{n}, the set of permutations of length n.

Patterns: words over the alphabet $[k]:=\{0,1, \cdots, k-1\}$.

A pattern τ is a word of length k over the alphabet [k].
There are basically thirteen patterns of length three up to order isomorphism.
$\mathcal{P}_{3}=\{000,001,010,100,011,101,110,021,012,102,120,201,210\}$

Patterns: words over the alphabet $[k]:=\{0,1, \cdots, k-1\}$.

A pattern τ is a word of length k over the alphabet [k].
There are basically thirteen patterns of length three up to order isomorphism.
$\mathcal{P}_{3}=\{000,001,010,100,011,101,110,021,012,102,120,201,210\}$
An inversion sequence $e \in I_{n}$ contains the pattern τ if there is a subsequence of length k in e that is order isomorphic to τ; otherwise, e avoids the pattern τ.
$I_{n}(\tau)$ denotes the set of all τ-avoiding inversion sequences of length n.

For a given set of patterns B, we set $I_{n}(B)=\cap_{\tau \in B} I_{n}(\tau)$.

Examples for $I_{n}(\tau)$

$e=01102321 \in I_{8}$ avoids the pattern 0000 because there is no subsequence $e_{i} e_{j} e_{k} e_{l}$ of length four in e with $i<j<k<l$ and $e_{i}=e_{j}=e_{k}=e_{l}$.

Examples for $I_{n}(\tau)$

$e=01102321 \in I_{8}$ avoids the pattern 0000 because there is no subsequence $e_{i} e_{j} e_{k} e_{l}$ of length four in e with $i<j<k<l$ and $e_{i}=e_{j}=e_{k}=e_{l}$.

On the other hand, $e=01102321$ contains the patterns

- 010 because it has subsequences $-1---3-1$ or ----232 - order isomorphic to 010,
- 000 because it has subsequence $-11----1$ order isomorphic to 000.

Pattern-avoiding inversion sequences

They provide a unifying interpretation that relates a vast array of combinatorial structures.

- Fibonacci numbers
- Catalan numbers
- Schröder numbers
- Euler up/down numbers
- Bell numbers
appear as enumerating sequences for pattern-restricted inversion sequences.

Avoiding a single pattern of length three

Mansour-Shattuck(2015) and Corteel et.al. (2015)

There are basically thirteen patterns of length three up to order isomorphism
$\mathcal{P}_{3}=\{000,001,010,100,011,101,110,021,012,102,120,201,210\}$

- $\left|I_{n}(012)\right|=F_{2 n-1}$, odd Fibonacci numbers. $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
- $\left|I_{n}(021)\right|=r_{n-1}, r_{n}$ is the $n^{\text {th }}$ large Schröder numbers. r_{n} is the number of paths in the first quadrant from $(0,0)$ to $(2 n, 0)$ with steps $(1,1),(1,-1)$ and $(2,0)$.
- $\left|I_{n}(000)\right|=E_{n+1}$ is the Euler up/down numbers.
E_{n} is the number of permutations of length n such that $\sigma_{1}<\sigma_{2}>\sigma_{3}<\cdots$.
$\tan x+\sec x=\sum_{n=0}^{\infty} E_{n} \frac{x^{n}}{n!}$

Avoiding a single pattern of length three

- $\left|I_{n}(001)\right|=2^{n-1}$
- $\left|I_{n}(011)\right|=B_{n}$, the $n^{\text {th }}$ Bell number. B_{n} is the number of ways to partition an n-element set into non-empty subsets called blocks.
- $\left|I_{n}(101)\right|=\left|I_{n}(110)\right|=$ powered Catalan numbers.
- $\left|I_{n}(201)\right|=\left|I_{n}(210)\right|$ corresponds to A263777 in OEIS.
- $\left|I_{n}(102)\right|,\left|I_{n}(010)\right|,\left|I_{n}(100)\right|,\left|I_{n}(120)\right|$ corresponds to A200753, A263779, A263780, A263778, respectively.
The case 010 is solved by B. Testart(2022).

Avoiding pair of patterns of length three

 Yan-Lin (2020)Consider inversion sequences avoiding two element subsets of
$\mathcal{P}_{3}=\{000,001,010,100,011,101,110,021,012,102,120,201,210\}$
There are 78 pairs but Yan and Lin (2021) showed that there 48 Wilf classes and enumerated 17 of them.
$-\left|I_{n}(001,210)\right|=\binom{n}{3}+n$

- For $p \in\{(012,201),(012,210)\},\left|I_{n}(p)\right|=2^{n+1}-\binom{n+1}{3}-2 n-1$
- For $p \in\{(012,021),(110,012)\},\left|I_{n}(p)\right|=2^{n}-n$

Enumeration of $I_{n}(B)$

Generating function $R(x)=\sum_{n \geq 1}\left|I_{n}(B)\right| x^{n}$.
We have three main steps:

- determine the succession rules for the corresponding generating tree.
- determine the equations satisfied by the generating functions from the tree rules.
- solve the equations and determine the enumerating sequence for $I_{n}(B)$.

Tree representation of $\mathcal{I}(B)=\cup_{n=1}^{\infty} I_{n}(B)$

We will construct a pattern-avoidance tree $\mathcal{T}(B)$ corresponding to the class $\mathcal{I}(B)$ as follows:

- the root is 0 and stays at level 1 .
- the $n^{\text {th }}$ level of the tree consist exactly the elements of $I_{n}(B)$.
- the children of $e_{1} e_{2} \cdots e_{n-1} \in I_{n-1}(B)$ are obtained from the set $\left\{e_{1} e_{2} \cdots e_{n-1} e_{n} \mid e_{n}=0,1, \ldots, n-1\right\}$ by obeying the pattern avoidance restrictions of B.
- we arrange the nodes from the left to the right so that $e_{1} e_{2} \cdots e_{n-1} i$ appears on the left of $e_{1} e_{2} \cdots e_{n-1} j$ if $i<j$.

Tree representation of $I_{n}(000,021)$

First four levels of $\mathcal{T}(000,021)$

An equivalence relation on $\mathcal{T}(B)$

Let $\mathcal{T}(B ; e)$ denote the subtree in $\mathcal{T}(B)$ which has the root e.
We define an equivalence relation on $\mathcal{T}(B)$ as follows: let $e, e^{\prime} \in \mathcal{T}(B)$

$$
e \sim e^{\prime} \text { if and only if } \mathcal{T}(B ; e) \cong \mathcal{T}\left(B ; e^{\prime}\right)
$$

An equivalence relation on $\mathcal{T}(B)$

Let $\mathcal{T}(B ; e)$ denote the subtree in $\mathcal{T}(B)$ which has the root e.
We define an equivalence relation on $\mathcal{T}(B)$ as follows: let $e, e^{\prime} \in \mathcal{T}(B)$

$$
e \sim e^{\prime} \text { if and only if } \mathcal{T}(B ; e) \cong \mathcal{T}\left(B ; e^{\prime}\right)
$$

Lemma

Let t be the length of the longest pattern in B.

$$
\mathcal{T}(B ; e) \cong \mathcal{T}\left(B ; e^{\prime}\right) \text { if and only if } \mathcal{T}^{2 t}(B ; e) \cong \mathcal{T}^{2 t}\left(B ; e^{\prime}\right)
$$

a simple example: enumeration of $I_{n}(000,001,012)$

The generating tree succession rules are given by

$$
\begin{aligned}
& \text { Root: } 0, \\
& \text { Rules: } 0 \rightsquigarrow 00,01 \\
& 01 \rightsquigarrow 00,011 \\
& 011 \rightsquigarrow 00 .
\end{aligned}
$$

a simple example: enumeration of $I_{n}(000,001,012)$

Let $R(x)=\sum_{n \geq 1}\left|I_{n}(000,001,012)\right| x^{n}$.

$$
\begin{aligned}
R(x) & =x+x A_{00}(x)+x A_{01}(x) \\
A_{01}(x) & =x+x A_{00}(x)+x A_{011}(x) \\
A_{011}(x) & =x+x A_{00}(x) \\
A_{00}(x) & =x
\end{aligned}
$$

Then $R(x)=x^{4}+2 x^{3}+2 x^{2}+x$.

the case $B=\{000,021\}$

Based on the second tree, we try to figure out the succession rules of the generating tree for the class $\mathcal{I}(B)$.

Succession rules for the generating tree of $I_{n}(000,021)$

We define $r_{0}=0, b_{0}=0$, and for $m \geq 1$,

$$
\begin{aligned}
a_{m} & =0011 \cdots m m \\
b_{m} & =0011 \cdots(m-1)(m-1) m \\
c_{m} & =01122 \cdots m m \\
d_{m} & =01122 \cdots(m-1)(m-1) m
\end{aligned}
$$

The generating tree $\mathcal{T}(000,021)$ is given by
Root: r_{0},
Rules: $r_{0} \rightsquigarrow a_{0} d_{1}$,

$$
\begin{aligned}
& a_{m} \rightsquigarrow b_{m+1} b_{m} \cdots b_{0}, \\
& b_{m} \rightsquigarrow a_{m} b_{m} b_{m-1} \cdots b_{0}, \\
& c_{m} \rightsquigarrow a_{m} d_{m+1} d_{m} \cdots d_{1}, \\
& d_{m} \rightsquigarrow b_{m} c_{m} d_{m} d_{m-1} \cdots d_{1} .
\end{aligned}
$$

Equations for the generating functions

Let $R(x)=\sum_{n \geq 1}\left|I_{n}(000,021)\right| x^{n}$.

$$
\begin{aligned}
R(x) & =x+x A_{0}(x)+x D_{1}(x), \\
A_{m}(x) & =x+x \sum_{j=0}^{m+1} B_{j}(x), \\
B_{m}(x) & =x+x A_{m}(x)+x \sum_{j=0}^{m} B_{j}(x), \\
C_{m}(x) & =x+x A_{m}(x)+x \sum_{j=1}^{m+1} D_{j}(x), \\
D_{m}(x) & =x+x B_{m}(x)+x C_{m}(x)+x \sum_{j=1}^{m} D_{j}(x) .
\end{aligned}
$$

Bivariate generating functions

We define

$$
\begin{gathered}
A(x, u)=\sum_{m \geq 0} A_{m}(x) u^{m}, B(x, u)=\sum_{m \geq 0} B_{m}(x) u^{m} \\
C(x, u)=\sum_{m \geq 1} C_{m}(x) u^{m-1}, D(x, u)=\sum_{m \geq 1} D_{m}(x) u^{m-1} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
R(x) & =x+x A(x, 0)+x D(x, 0), \\
A(x, u) & =\frac{x}{1-u}+\frac{x}{u}(B(x, u)-B(x, 0))+\frac{x}{1-u} B(x, u), \\
B(x, u) & =\frac{x}{1-u}+x A(x, u)+\frac{x}{1-u} B(x, u), \\
C(x, u) & =\frac{x}{1-u}+\frac{x}{u}(A(x, u)+D(x, u)-A(x, 0)-D(x, 0))+\frac{x}{1-u} D(x, u) \\
D(x, u) & =\frac{x}{1-u}+\frac{x}{u}(B(x, u)-B(x, 0))+x C(x, u)+\frac{x}{1-u} D(x, u) .
\end{aligned}
$$

Kernel Method

From the second and third equations, we get

$$
\frac{(1-x) u-x^{2}-u^{2}}{u(1-u-x)} A(x, u)=-\frac{x^{2}}{u(1-x)} A(x, 0)+\frac{x}{(1-u-x)(1-x)}
$$

Kernel Method

From the second and third equations, we get

$$
\frac{(1-x) u-x^{2}-u^{2}}{u(1-u-x)} A(x, u)=-\frac{x^{2}}{u(1-x)} A(x, 0)+\frac{x}{(1-u-x)(1-x)} .
$$

By choosing $u=x^{2} M(x)$, where $M(x)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}$ is the generating function for the Motzkin numbers, we obtain

$$
A(x, 0)=\frac{x M(x)}{1-x-x^{2} M(x)}=x M^{2}(x)
$$

and then

Kernel Method

From the second and third equations, we get

$$
\frac{(1-x) u-x^{2}-u^{2}}{u(1-u-x)} A(x, u)=-\frac{x^{2}}{u(1-x)} A(x, 0)+\frac{x}{(1-u-x)(1-x)} .
$$

By choosing $u=x^{2} M(x)$, where $M(x)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}$ is the generating function for the Motzkin numbers, we obtain

$$
A(x, 0)=\frac{x M(x)}{1-x-x^{2} M(x)}=x M^{2}(x)
$$

and then

$$
A(x, u)=\frac{x M(x)\left(x^{2} M(x)-u\right)}{u^{2}+(x-1) u+x^{2}}
$$

and

$$
B(x, u)=\frac{x M(x)\left((u+x) x^{2} M(x)-u+x^{2}\right)}{u^{2}+u(x-1)+x^{2}}
$$

Enumeration of $I_{n}(000,021)$

The generating function $R(x)=\sum_{n \geq 1}\left|I_{n}(000,021)\right| x^{n}$ is given by

$$
R(x)=\frac{3 x^{3}+x^{2}-3 x+1}{2 x^{2} \sqrt{(1+x)(1-3 x)}}-\frac{(1-x)^{2}}{2 x^{2}}
$$

Hence

$$
\left|I_{n}(000,021)\right|=\frac{1}{2}\left(3 a_{n-1}+a_{n}-3 a_{n+1}+a_{n+2}\right)
$$

for all $n \geq 1$ where $a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{2 k}{k}$.

Enumeration of $I_{n}(021,00011)$

the vertex labeling symbols:
$a_{m}=0^{m}, b_{m}=01^{m}, c_{m}=001^{m}, d_{m}=0^{2} 1^{2} \ldots m^{2}, e_{m}=0^{2} 1^{2} \ldots(m-1)^{2} m, f_{m}=01^{2} 2^{2} \ldots m^{2}$, and $g_{m}=01^{2} 2^{2} . .(m-1)^{2} m$, for all $m \geq 1$; and $a_{e}=e$ for an inversion sequence e.
the generating tree succession rules:

$$
\begin{array}{ll}
a_{0} \rightsquigarrow a_{00} g_{1}, & a_{00} \rightsquigarrow a_{3} e_{1} a_{002}, \\
a_{002} \rightsquigarrow a_{3} a_{0022} a_{002}, & a_{0022} \rightsquigarrow a_{4} a_{00222} e_{1} a_{002}, \\
a_{00222} \rightsquigarrow a_{5} c_{3} a_{3} a_{0002} a_{0003}, & a_{m} \rightsquigarrow a_{m+1} \cdots a_{3} a_{0002} a_{0003}, \\
b_{m} \rightsquigarrow b_{m+1} c_{m} a_{m} \cdots a_{3} a_{0002} a_{0003}, \quad m \geq 3 & d_{m} \rightsquigarrow a_{m+4} c_{m+2} e_{m+1} \cdots e_{1} a_{002}, \quad m \geq 1 \\
c_{m} \rightsquigarrow a_{m+3} c_{m+1} a_{m+1} \cdots a_{3} a_{0002} a_{0003}, & f_{m} \rightsquigarrow d_{m} b_{m+2} g_{m+1} \cdots g_{1}, \quad m \geq 1 \\
e_{m} \rightsquigarrow a_{m+3} d_{m} e_{m} \cdots e_{1} a_{002}, & g_{m} \rightsquigarrow e_{m} f_{m} g_{m} \cdots g_{1}, \quad m \geq 1
\end{array}
$$

Then we have

$$
\begin{aligned}
F_{(021,00011)}(x) & =\frac{\left(1-x-3 x^{2}\right) \sqrt{1-4 x}-9 x^{3}-3 x^{2}+4 x-1}{2 x^{3} \sqrt{(1+x)(1-3 x)}} \\
& -\frac{\left(2-2 x+3 x^{2}\right) \sqrt{1-4 x}+2 x^{3}-8 x^{2}+7 x-2}{2 x^{3}}
\end{aligned}
$$

Enumeration of $I_{n}(021,00012)$

the vertex labeling symbols:

$$
\begin{aligned}
& a_{m}=0^{m}, b_{m}=01^{m}, c_{m}=001^{m}, d_{m}=0^{2} 1^{2} \ldots m^{2}, e_{m}=0^{2} 1^{2} \ldots(m-1)^{2} m, f_{m}=01^{2} 2^{2} \ldots m^{2}, \text { and } \\
& g_{m}=01^{2} 2^{2} \ldots(m-1)^{2} m, \text { for all } m \geq 1 ; \text { and } a_{e}=e \text { for an inversion sequence } e .
\end{aligned}
$$

the generating tree succession rules:

$$
\begin{array}{ll}
a_{0} \rightsquigarrow a_{00} g_{1}, & a_{00} \rightsquigarrow a_{3} e_{1} a_{002}, \\
a_{002} \rightsquigarrow a_{3} a_{0022} a_{002}, & a_{0022} \rightsquigarrow a_{4} e_{1} a_{002} a_{00222}, \\
a_{00222} \rightsquigarrow a_{5} c_{3} a_{0001}^{3}, & a_{0001} \rightsquigarrow a_{0001}^{2}, \\
a_{m} \rightsquigarrow a_{m+1} a_{0001}^{m}, & b_{m} \rightsquigarrow b_{m+1} c_{m} a_{0001}^{m}, \\
c_{m} \rightsquigarrow a_{m+3} c_{m+1} a_{0001}^{m+1}, & d_{m} \rightsquigarrow a_{m+4} c_{m+2} e_{m+1} \cdots \\
e_{m} \rightsquigarrow a_{m+3} d_{m} e_{m} \cdots e_{1} a_{002}, & f_{m} \rightsquigarrow d_{m} b_{m+2} g_{m+1} \cdots \varepsilon
\end{array}
$$

$$
g_{m} \rightsquigarrow e_{m} f_{m} g_{m} \cdots g_{1}
$$

Enumeration of $I_{n}(021, \tau)$

Mansour-Y. (2022)

We determined the generating trees and generating functions for the inversion sequences avoiding 021 and another pattern of length 4 or 5 .

$$
\begin{aligned}
&\left|I_{n}(\{021,0001\})\right|=\frac{(4 n-25)(-1)^{n}}{32}-\frac{n(n+1)-1}{4}+\frac{1}{32} 3^{n+4} \\
&+\sum_{j=0}^{n+1}\left(\frac{(4 j-39)(-1)^{j}}{32}+\frac{1}{4} j^{2}-j+\frac{1}{2}-\frac{1}{32} 3^{j+2}\right) M_{n+1-j}, \\
&\left|I_{n}(\{021,0010\})\right|=\binom{2 n}{n}, \\
&\left|I_{n}(\{021,0011\})\right|=C_{n+2}+1-\sum_{j=0}^{n+1} C_{j}, \\
&\left|I_{n}(\{021,0012\})\right|=2^{n+3}-\frac{(n+1)\left(2 n^{2}+7 n+24\right)}{6}-3, \\
&\left|I_{n}(\{021,0100\})\right|=\left|I_{n}(\{021,0110\})\right|=\frac{n^{2}+n+6}{8(2 n+3)(2 n+5)}\binom{2 n+6}{n+3}, \\
&\left|I_{n}(\{021,0101\})\right|=\left|I_{n}(\{021,0111\})\right|=\sum_{i=1}^{n+1} \frac{1}{i}\binom{n}{i-1}\binom{2 n+2-i}{i-1}
\end{aligned}
$$

$$
\begin{aligned}
\left|I_{n}(\{021,0102\})\right| & =2^{n+1}-\frac{(n+1)\left(n^{2}+2 n+12\right)}{6}-1+\sum_{j=0}^{n+1} C_{j} \\
\left|I_{n}(\{021,0112\})\right| & =C_{n+1}-2^{n+1}+1+\sum_{j=0}^{n} 2^{n-j} C_{j}, \\
\left|I_{n}(\{021,0120\})\right| & =\left|I_{n}(\{021,0122\})\right|=\frac{1}{2}\binom{2 n+2}{n+1}-\frac{1}{2} \sum_{j=1}^{n}\binom{2 j}{j}, \\
\left|I_{n}(\{021,0123\})\right| & =2^{n-1}\left(n^{2}-3 n+4\right)+\frac{n(n+1)}{2}-1, \\
\left|I_{n}(\{021,1000\})\right| & =\left|I_{n}(\{021,1100\})\right|=\frac{n^{5}+2 n^{4}+23 n^{3}+46 n^{2}+120 n+48}{2(n+1)(n+2)(n+3)(n+4)}\binom{2 n}{n}, \\
\left|I_{n}(\{021,1001\})\right| & =\left|I_{n}(\{021,1011\})\right|=\left|I_{n}(\{021,1101\})\right|=\frac{1}{n+1} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1}{j}\binom{2 n+2}{n-2 j}, \\
\left|I_{n}(\{021,1002\})\right| & =\frac{1}{2}\binom{2 n+6}{n+3}-\frac{5}{2}\binom{2 n+4}{n+2}+\frac{5}{2}\binom{2 n+2}{n+1}+\frac{1}{2} \sum_{j=0}^{n}\binom{2 j}{j} \\
& +2^{n+1}-\frac{1}{24}\left(n^{4}+2 n^{3}+11 n^{2}+34 n+36\right), \\
\left|I_{n}(\{021,1020\})\right| & =\left|I_{n}(\{021,1022\})\right| \\
& =\binom{2 n+8}{n+4}-\frac{13}{2}\binom{2 n+6}{n+3}+\frac{21}{2}\binom{2 n+3}{n+2}-\frac{1}{2} \sum_{j=0}^{n+1}\binom{2 j}{j}-\frac{1}{2},
\end{aligned}
$$

$$
\begin{aligned}
&\left|I_{n}(\{021,1023\})\right|=\sum_{j=0}^{n+1}\left(2^{j+1}-j-1\right) C_{n+1-j}+\frac{n\left(3 n^{3}+22 n^{2}+129 n+398\right)}{24}+2^{n-1}\left(n^{2}-3 n-52\right)+24, \\
&\left|I_{n}(\{021,1102\})\right|=\frac{1}{2}\binom{2 n+6}{n+3}-\frac{21}{4}\binom{2 n+4}{n+2}+\binom{2 n+2}{n+1}+\frac{(n+1)^{2}}{2}-2^{n}+\frac{1}{2} \sum_{j=1}^{n+3}\left(2^{j-2}-3 j+8\right)\binom{2 n+6-2 j}{n+3-j} \\
&\left|I_{n}(\{021,1120\})\right|=4^{n}-\frac{n}{2(2 n+3)}\binom{2 n+4}{n+2}, \\
&\left|I_{n}(\{021,1200\})\right|=\left|I_{n}(\{021,1220\})\right|=\frac{n+4}{2(n+2)}\binom{2 n+2}{n+1}+\sum_{j=0}^{n-1}(2 j+1)\binom{2 j}{j}-4^{n}, \\
&\left|I_{n}(\{021,1203\})\right|=\frac{n+1}{24}\left(n^{3}+n^{2}-2 * n-108\right)+2^{n-1}\left(n^{2}-11 n+28\right)-\frac{19}{2} \\
&+\frac{1}{2}\binom{2 n+2}{n+1}-\frac{1}{2} \sum_{j=2}^{n+1}(j-1)\binom{2 n+2-2 j}{n+1-j}, \\
&\left|I_{n}(\{021,1220\})\right|=\frac{n+4}{n+2}\binom{2 n+1}{n}-4^{n}+\sum_{j=0}^{n}(2 j+1)\binom{2 j}{j}, \\
&\left|I_{n}(\{021,1230\})\right|= \frac{1}{3}\left(2 \cdot 4^{n}+1\right)+\sum_{j=1}^{n}\left(\frac{j}{2}-2^{j-1}\right)\binom{2 n+2-2 j}{n+1-j} .
\end{aligned}
$$

Thank you!

References

S. Corteel, M.A. Martinez, C.D. Savage, M. Weselcouch, Patterns in inversion sequences I, Discrete Math. Theor. Comput. Sci. 18 (2), 2016.
T T. Mansour, M. Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl. 25 (2), 157-176, 2015.

宔
M. Martinez, C. Savage, Patterns in inversion sequences II: inversion sequences avoiding triples of relations. J. Integer Seq. 21, no. 2, Art. 18.2.2, 44 pp, 2018.
(C. Yan and Z. Lin, Inversion sequences avoiding pairs of patterns. Discrete Math. Theor. Comput. Sci. 22, no. 1, Paper No. 23, 35 pp, [2020-2021].

I. Kotsireas, T. Mansour, G. Yıldırım, An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences.
T- T. Mansour, G. Yıldırım, Inversion sequences avoiding 021 and another pattern of length four.

succession rules

Consider the children of a node labeled by $a_{m}=0011 \cdots m m$:

$$
a_{m} j=0011 \cdots m m j \text { where } j=m+1, m+2, \ldots, 2 m+2
$$

otherwise, $a_{m} j$ does not avoid B.

- $a_{m}(m+1)=0011 \cdots m m(m+1)=b_{m+1}$;
- for other j values, $a_{m}(m+j)=0011 \cdots m m(m+j)$; note that $\mathcal{T}\left(B ; a_{m}(m+j)\right) \cong \mathcal{T}\left(B ; b_{m+2-j}\right)$ by removing the letters $m+2-j, m+3-j, \ldots, m$ and decreasing each letter greater than m by $2 j-1$.
- therefore the children of the node with label a_{m} are exactly the nodes labelled by $b_{m+1}, b_{m}, \ldots, b_{0}$, that is, $a_{m} \rightsquigarrow b_{m+1} b_{m} \cdots b_{0}$.

